Chapter 13: Problem 1932
If two streams of protons move parallel to each other in the same direction, then they (a) Do not exert any force on each other (b) Repel each other (c) Attract each other (d) Get rotated to be perpendicular to each other.
Chapter 13: Problem 1932
If two streams of protons move parallel to each other in the same direction, then they (a) Do not exert any force on each other (b) Repel each other (c) Attract each other (d) Get rotated to be perpendicular to each other.
All the tools & learning materials you need for study success - in one app.
Get started for freeA magnetic field existing in a region is given by $\mathrm{B}^{-}=\mathrm{B}_{0}[1+(\mathrm{x} / \ell)] \mathrm{k} \wedge . \mathrm{A}\( square loop of side \)\ell$ and carrying current I is placed with edges (sides) parallel to \(\mathrm{X}-\mathrm{Y}\) axis. The magnitude of the net magnetic force experienced by the Loop is (a) \(2 \mathrm{~B}_{0} \overline{\mathrm{I} \ell}\) (b) \((1 / 2) B_{0} I \ell\) (c) \(\mathrm{B}_{\circ} \mathrm{I} \ell\) (d) BI\ell
A magnet of magnetic moment \(\mathrm{M}\) and pole strength \(\mathrm{m}\) is divided in two equal parts, then magnetic moment of each part will be (a) \(\mathrm{M}\) (b) \((\mathrm{M} / 2)\) (c) \((\mathrm{M} / 4)\) (d) \(2 \mathrm{M}\)
A coil in the shape of an equilateral triangle of side 115 suspended between the pole pieces of a permanent magnet such that \(\mathrm{B}^{-}\) is in plane of the coil. If due to a current \(\mathrm{I}\) in the triangle a torque \(\tau\) acts on it, the side 1 of the triangle is (a) \((2 / \sqrt{3})(\tau / \mathrm{BI})^{1 / 2}\) (b) \((2 / 3)(\tau / B I)\) (c) \(2[\tau /\\{\sqrt{(} 3) \mathrm{BI}\\}]^{1 / 2}\) (d) \((1 / \sqrt{3})(\tau / \mathrm{BI})\)
Two similar coils are kept mutually perpendicular such that their centers co- inside. At the centre, find the ratio of the mag. field due to one coil and the resultant magnetic field by both coils, if the same current is flown. (a) \(1: \sqrt{2}\) (b) \(1: 2\) (c) \(2: 1\) (d) \(\sqrt{3}: 1\)
A particle of mass \(\mathrm{m}\) and charge q moves with a constant velocity v along the positive \(\mathrm{x}\) -direction. It enters a region containing a uniform magnetic field B directed along the negative \(z\) -direction, extending from \(x=a\) to \(x=b\). The minimum value of required so that the particle can just enter the region \(\mathrm{x}>\mathrm{b}\) is (a) \([(\mathrm{q} \mathrm{bB}) / \mathrm{m}]\) (b) \(q(b-a)(B / m)\) (c) \([(\mathrm{qaB}) / \mathrm{m}]\) (d) \(q(b+a)(B / 2 m)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.