Chapter 13: Problem 1923
The deflection in a Galvanometer falls from 50 division to 20 when \(12 \Omega\) shunt is applied. The Galvanometer resistance is (a) \(18 \Omega\) (b) \(36 \Omega\) (c) \(24 \Omega\) (d) \(30 \Omega\)
Chapter 13: Problem 1923
The deflection in a Galvanometer falls from 50 division to 20 when \(12 \Omega\) shunt is applied. The Galvanometer resistance is (a) \(18 \Omega\) (b) \(36 \Omega\) (c) \(24 \Omega\) (d) \(30 \Omega\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen 2 Amp current is passed through a tangent galvanometer. It gives a deflection of \(30^{\circ} .\) For \(60^{\circ}\) deflection, the current must be (a) \(1 \mathrm{Amp}\) (b) \(2 \sqrt{3 a m p}\) (c) \(4 \mathrm{amp}\) (d) \(6 \mathrm{Amp}\)
Two concentric coils each of radius equal to \(2 \pi \mathrm{cm}\) are placed at right angles to each other. 3 Amp and \(4 \mathrm{Amp}\) are the currents flowing in each coil respectively. The magnetic field intensity at the centre of the coils will be Tesla. (a) \(5 \times 10^{-5}\) (b) \(7 \times 10^{-5}\) (c) \(12 \times 10^{-5}\) (d) \(10^{-5}\)
If two streams of protons move parallel to each other in the same direction, then they (a) Do not exert any force on each other (b) Repel each other (c) Attract each other (d) Get rotated to be perpendicular to each other.
A long straight wire carrying current of \(30 \mathrm{Amp}\) is placed in an external uniform mag. field of induction \(4 \times 10^{-4}\) tesla. The mag. field is acting parallel to the direction of current. The magnitude of the resultant magnetic induction in tesla at a point \(2 \mathrm{~cm}\) away from the wire is tesla. (a) \(10^{-4}\) (c) \(5 \times 10^{-4}\) (b) \(3 \times 10^{-4}\) (d) \(6 \times 10^{-4}\)
A thin magnetic needle oscillates in a horizontal plane with a period \(\mathrm{T}\). It is broken into n equal parts. The time period of each part will be (a) \(\mathrm{T}\) (b) \(\mathrm{n}^{2} \mathrm{~T}\) (c) \((\mathrm{T} / \mathrm{n})\) (d) \(\left(\mathrm{T} / \mathrm{n}^{2}\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.