Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A long solenoid has 200 turns per \(\mathrm{cm}\) and carries a current of $2.5 \mathrm{Amp}$. The mag. field at its centre is tesla. (a) \(\pi \times 10^{-2}\) (b) \(2 \pi \times 10^{-2}\) (c) \(3 \pi \times 10^{-2}\) (d) \(4 \pi \times 10^{-2}\)

Short Answer

Expert verified
The magnetic field at the center of the solenoid is (a) \(\pi \times 10^{-2} \mathrm{T}\).

Step by step solution

01

Convert turns per centimeter to turns per meter

\ First, we will need to convert the given number of turns per centimeter to turns per meter. Recall that there are 100 centimeters in 1 meter. So, \(n = 200 \text{ turns/cm} \times 100 \text{ cm/m} = 20000 \text{ turns/m}\).
02

Recall the formula for the magnetic field inside a long solenoid

\ The formula for the magnetic field inside a long solenoid is \(B = \mu_0 n I\), where \(B\) is the magnetic field, \(\mu_0\) is the vacuum permeability constant (\(4\pi \times 10^{-7} \text{ T m/A}\)), \(n\) is the number of turns per meter, and \(I\) is the current.
03

Plug in the values and solve for the magnetic field

\ Now, plug the given values into the formula and solve for the magnetic field: \(B = (4\pi \times 10^{-7} \text{ T m/A}) \times (20000 \text{ turns/m}) \times (2.5 \mathrm{A})\).
04

Calculate the magnetic field

\ Using a calculator, compute the magnetic field: \(B = (4\pi \times 10^{-7}) \times (20000) \times (2.5)\) \(B = \pi \times 10^{-2} \mathrm{T}\).
05

Compare the result to the given options

\ Our calculated magnetic field is \(\pi \times 10^{-2} \text{ T}\), which matches option (a). Therefore, the correct answer is (a) \(\pi \times 10^{-2} \text{ T}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solenoid of \(1.5\) meter length and \(4 \mathrm{~cm}\) diameter possesses 10 turn per \(\mathrm{cm}\). A current of \(5 \mathrm{Amp}\) is flowing through it. The magnetic induction at axis inside the solenoid is (a) \(2 \pi \times 10^{-3} \mathrm{~T}\) (b) \(2 \pi \times 10^{-5} \mathrm{~T}\) (c) \(2 \pi \times 10^{-2} \mathrm{G}\) (d) \(2 \pi \times 10^{-5} \mathrm{G}\)

A proton and an particle are projected with the same kinetic energy at right angles to the uniform mag. field. Which one of the following statements will be true. (a) The \(\alpha\) - particle will be bent in a circular path with a small radius that for the proton. (b) The radius of the path of the \(\alpha\) - particle will be greater than that of the proton. (c) The \(\alpha\) - particle and the proton will be bent in a circular path with the same radius. (d) The \(\alpha\) - particle and the proton will go through the field in a straight line.

In each of the following questions, Match column-I and column-II and select the correct match out of the four given choices.\begin{tabular}{l|l} Column - I & Column - II \end{tabular} (A) Biot-savart's law (P) Direction of magnetic field induction (B) Right hand thumb rule (Q) Magnitude of magnetic field induction (C) Fleming's left hand rule (R) Direction of induced current (D) Fleming's right hand rule (S) Direction of force due to a mag. field (a) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (b) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$ (c) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$ (d) $\mathrm{A} \rightarrow \mathrm{P}: \mathrm{B} \rightarrow \mathrm{Q}: \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$

A Galvanometer of resistance \(15 \Omega\) is connected to a battery of 3 volt along with a resistance of \(2950 \Omega\) in series. A full scale deflection of 30 divisions is obtained in the galvanometer. In order to reduce this deflection to 20 divisions, the resistance in series should be (a) \(6050 \Omega\) (b) \(4450 \Omega\) (c) \(5050 \Omega\) (d) \(5550 \Omega\)

In each of the following questions, Match column-I and column-II and select the correct match out of the four given choices.\begin{tabular}{l|r} Column-I & Column - II \end{tabular} (A) Magnetic field induction due to Current 1 through straight conductor at a perpendicular distance \(\mathrm{r}\). (B) Magnetic field induction at (Q) \(\left[\left(\mu_{0} \mathrm{I}\right) /(4 \pi \mathrm{r})\right]\) the centre of current \((1)\) carrying Loop of radius (r) (C) Magnetic field induction at the (R) \(\left[\mu_{0} /(4 \pi)\right](2 \mathrm{I} / \mathrm{r})\) axis of current (1) carrying coil of radius (r) at a distance (r) from centre of coil (D) Magnetic field induction at the (S) \(\left[\mu_{0} /(4 \sqrt{2})\right](\mathrm{L} / \mathrm{r})\) at the centre due to circular arc of length \(\mathrm{r}\) and radius (r) carrying current (I) (a) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{S} ; \mathrm{C} \rightarrow \mathrm{P} ; \mathrm{D} \rightarrow \mathrm{Q}$ (b) $\mathrm{A} \rightarrow \mathrm{R} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$ (c) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{Q} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{R}$ (d) $\mathrm{A} \rightarrow \mathrm{Q} ; \mathrm{B} \rightarrow \mathrm{P} ; \mathrm{C} \rightarrow \mathrm{R} ; \mathrm{D} \rightarrow \mathrm{S}$

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free