Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A long straight wire of radius "a" carries a steady current I the current is uniformly distributed across its cross-section. The ratio of the magnetic field at \(\mathrm{a} / 2\) and \(2 \mathrm{a}\) is (a) \((1 / 4)\) (b) 4 (c) 1 (d) \((1 / 2)\)

Short Answer

Expert verified
The ratio of the magnetic field at \(a/2\) and \(2a\) is 4. The correct answer is (b).

Step by step solution

01

Use Ampère's Law to find the magnetic field expression.

According to Ampère's Law, the magnetic field at a distance \(r\) from the axis of a long straight wire is given by the formula: \[B(r) = \frac{\mu_0 I}{2 \pi r}\] Here, \(B(r)\) is the magnetic field at a distance \(r\), \(\mu_0\) is the permeability of free space, and \(I\) is the current carried by the wire. Now we can use this formula to find the magnetic fields at the distances \(a/2\) and \(2a\).
02

Find the magnetic field at distance \(a/2\).

By substituting the distance \(a/2\) into the formula from step 1, we can find the magnetic field at this point: \[B\left(\frac{a}{2}\right) = \frac{\mu_0 I}{2 \pi \frac{a}{2}} = \frac{2\mu_0 I}{2 \pi a}\]
03

Find the magnetic field at distance \(2a\).

By substituting the distance \(2a\) into the formula from step 1, we can find the magnetic field at this point: \[B(2a) = \frac{\mu_0 I}{2 \pi 2a} = \frac{\mu_0 I}{4 \pi a}\]
04

Calculate the ratio of the magnetic fields.

Now we can compute the ratio of the magnetic fields at the two given distances: \[\frac{B\left(\frac{a}{2}\right)}{B(2a)} = \frac{\frac{2\mu_0 I}{2 \pi a}}{\frac{\mu_0 I}{4 \pi a}} = \frac{1}{1/4} = 4\] So, the ratio of the magnetic field at \(a/2\) and \(2a\) is 4. The correct answer is (b).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long wire carr1es a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is \(\mathrm{B}\). It is then bent into a circular Loop of n turns. The magnetic field at the centre of the coil for same current will be. (a) \(\mathrm{nB}\) (b) \(\mathrm{n}^{2} \mathrm{~B}\) (c) \(2 \mathrm{nB}\) (d) \(2 \mathrm{n}^{2} \mathrm{~B}\)

A long horizontal wire " \(\mathrm{A}^{\prime \prime}\) carries a current of $50 \mathrm{Amp}$. It is rigidly fixed. Another small wire "B" is placed just above and parallel to " \(\mathrm{A}^{\prime \prime}\). The weight of wire- \(\mathrm{B}\) per unit length is \(75 \times 10^{-3}\) Newton/meter and carries a current of 25 Amp. Find the position of wire \(B\) from \(A\) so that wire \(B\) remains suspended due to magnetic repulsion. Also indicate the direction of current in \(B\) w.r.t. to \(A\).(a) \((1 / 2) \times 10^{-2} \mathrm{~m}\); in same direction (b) \((1 / 3) \times 10^{-2} \mathrm{~m}\); in mutually opposite direction (c) \((1 / 4) \times 10^{-2} \mathrm{~m}\); in same direction (d) \((1 / 5) \times 10^{-2} \mathrm{~m}\); in mutually opposite direction

A conducting rod of length \(\ell\) [cross-section is shown] and mass \(\mathrm{m}\) is moving down on a smooth inclined plane of inclination \(\theta\) with constant speed v. A vertically upward mag. field \(\mathrm{B}^{-}\) exists in upward direction. The magnitude of mag. field \(B^{-}\) is(a) $[(\mathrm{mg} \sin \theta) /(\mathrm{I} \ell)]$ (b) \([(\mathrm{mg} \cos \theta) /(\mathrm{I} \ell)]\) (c) \([(\mathrm{mg} \tan \theta) /(\mathrm{I} \ell)]\) (d) \([(\mathrm{mg}) /(\mathrm{I} \ell \sin \theta)]\)

A 2 Mev proton is moving perpendicular to a uniform magnetic field of \(2.5\) tesla. The force on the proton is (a) \(3 \times 10^{-10} \mathrm{~N}\) (b) \(70.8 \times 10^{-11} \mathrm{~N}\) (c) \(3 \times 10^{-11} \mathrm{~N}\) (d) \(7.68 \times 10^{-12} \mathrm{~N}\)

A Galvanometer has a resistance \(\mathrm{G}\) and \(\mathrm{Q}\) current \(\mathrm{I}_{\mathrm{G}}\) flowing in it produces full scale deflection. \(\mathrm{S}_{1}\) is the value of the shunt which converts it into an ammeter of range 0 to \(\mathrm{I}\) and \(\mathrm{S}_{2}\) is the value of the shunt for the range 0 to \(2 \mathrm{I}\). The ratio $\left(\mathrm{S}_{1} / \mathrm{S}_{2}\right) \mathrm{is}$ (a) $\left[\left(2 \mathrm{I}-\mathrm{I}_{\mathrm{G}}\right) /\left(\mathrm{I}-\mathrm{I}_{\mathrm{G}}\right)\right]$ (b) $(1 / 2)\left[\left(\mathrm{I}-\mathrm{I}_{\mathrm{G}}\right) /\left(2 \mathrm{I}-\mathrm{I}_{\mathrm{G}}\right)\right]$ (c) 2 (d) 1

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free