Chapter 13: Problem 1861
An element \(\mathrm{d} \ell^{-}=\mathrm{dx} \uparrow\) (where \(\mathrm{dx}=1 \mathrm{~cm}\) ) is placed at the origin and carries a large current \(\mathrm{I}=10 \mathrm{Amp}\). What is the mag. field on the Y-axis at a distance of \(0.5\) meter ? (a) \(2 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (b) \(4 \times 10^{8} \mathrm{k} \wedge \mathrm{T}\) (c) \(-2 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\) (d) \(-4 \times 10^{-8} \mathrm{k} \wedge \mathrm{T}\)
Short Answer
Step by step solution
Biot-Savart Law
Set up the Biot-Savart Integral
Calculate the vector cross product
Determine the distance
Evaluate the Biot-Savart integral
Solve for the magnetic field
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.