Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two metal plate form a parallel plate capacitor. The distance between the plates is \(\mathrm{d}\). A metal sheet of thickness \(\mathrm{d} / 2\) and of the same area is introduced between the plates. What is the ratio of the capacitance in the two cases? (A) \(4: 1\) (B) \(3: 1\) (C) \(2: 1\) (D) \(5: 1\)

Short Answer

Expert verified
The ratio of the capacitance in the two cases is (C) \(2:1\).

Step by step solution

01

Understand the capacitance formula for parallel plate capacitor

Capacitance (C) between two plates is given by the formula: \(C = \frac{\epsilon A}{d}\) Where ε is the permittivity of the dielectric material between the plates, A is the area of the plates, and d is the distance between them.
02

Capacitance in the first case (C1)

The first case, the distance between the plates is d. Using the capacitance formula for a parallel plate capacitor: \(C_1 = \frac{\epsilon A}{d}\)
03

Capacitance in the second case (C2)

In the second case, a metal sheet is introduced between the plates and it has a thickness of d/2. The metal sheet divides the capacitor into two capacitors connected in series, each with a thickness of d/2. The new capacitance (C2) is equal to the capacitance of one of these new capacitors multiplied by 2 in series: \(C'_2 = \frac{\epsilon A}{d/2}\) As the two capacitors are in series, their total capacitance (C2) can be found using the formula for capacitors in series: \(\frac{1}{C_2} = \frac{1}{C'_2} + \frac{1}{C'_2}\) Which can be simplified to: \(\frac{1}{C_2} = 2 \cdot \frac{1}{C'_2}\)
04

Determine the ratio of capacitance

We now want the ratio \(\frac{C_1}{C_2}\). Let's plug in the values we found for C1 and C2: \(\frac{C_1}{C_2} = \frac{\frac{\epsilon A}{d}}{\frac{1}{2 \cdot \frac{1}{\frac{\epsilon A}{d/2}}}}\) Simplifying: \(\frac{C_1}{C_2} = \frac{2 \epsilon A d}{d \epsilon A}\) Which yields: \(\frac{C_1}{C_2} = \frac{2}{1}\) Hence, the capacitance ratio in the two cases is 2:1. The correct answer is (C) \(2:1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two point masses \(\mathrm{m}\) each carrying charge \(-\mathrm{q}\) and \(+\mathrm{q}\) are attached to the ends of a massless rigid non-conducting rod of length \(\ell\). The arrangement is placed in a uniform electric field \(\mathrm{E}\) such that the rod makes a small angle \(5^{\circ}\) with the field direction. The minimum time needed by the rod to align itself along the field is \(\ldots \ldots .\) (A) \(t=\pi \sqrt{[}(2 M \ell) /(3 q E)]\) (B) $\mathrm{t}=(\pi / 2) \sqrt{[}(\mathrm{M} \ell) /(2 \mathrm{q} \mathrm{E})]$ (D) \(t=2 \pi \sqrt{[}(M \ell / E)]\)

A small conducting sphere of radius \(r\) is lying concentrically inside a bigger hollow conducting sphere of radius \(R\). The bigger and smaller sphere are charged with \(\mathrm{Q}\) and \(\mathrm{q}(\mathrm{Q}>\mathrm{q})\) and are insulated from each other. The potential difference between the spheres will be \(\ldots \ldots\) (A) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(q / r)-(Q / R)]\) (B) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(q / r)-(q / R)]\) (C) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(Q / R)+(q / r)]\) (D) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(\mathrm{q} / \mathrm{R})-(\mathrm{Q} / \mathrm{r})]$

Two positive point charges of \(12 \mu \mathrm{c}\) and \(8 \mu \mathrm{c}\) are \(10 \mathrm{~cm}\) apart each other. The work done in bringing them $4 \mathrm{~cm}$ closer is .... (A) \(5.8 \mathrm{~J}\) (B) \(13 \mathrm{eV}\) (C) \(5.8 \mathrm{eV}\) (D) \(13 \mathrm{~J}\)

64 identical drops of mercury are charged simultaneously to the same potential of 10 volt. Assuming the drops to be spherical, if all the charged drops are made to combine to form one large drop, then its potential will be (A) \(100 \mathrm{~V}\) (B) \(320 \mathrm{~V}\) (C) \(640 \mathrm{~V}\) (D) \(160 \mathrm{~V}\)

Two identical metal plates are given positive charges \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\left(<\mathrm{Q}_{1}\right)\) respectively. If they are now brought close to gather to form a parallel plate capacitor with capacitance \(\mathrm{c}\), the potential difference between them is (A) \(\left[\left(Q_{1}+Q_{2}\right) /(2 c)\right]\) (B) \(\left[\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / \mathrm{c}\right]\) (C) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) /(2 \mathrm{c})\right]\) (D) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) / \mathrm{c}\right]\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free