Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The potential at a point \(\mathrm{x}\) (measured in \(\mu \mathrm{m}\) ) due to some charges situated on the \(\mathrm{x}\) -axis is given by \(\mathrm{V}(\mathrm{x})=\left[(20) /\left(\mathrm{x}^{2}-4\right)\right]\) Volt. The electric field at \(\mathrm{x}=4 \mu \mathrm{m}\) is given by (A) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (B) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (C) \((10 / 9) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction (D) \((5 / 3) \mathrm{V} \mu \mathrm{m}^{-1}\) and in positive \(\mathrm{x}\) - direction

Short Answer

Expert verified
The electric field at \(x = 4 \mu m\) is \(\frac{10}{9} V\mu m^{-1}\) and is found to be in positive x-direction. Hence, the correct answer is (C).

Step by step solution

01

Compute the derivative of V(x) with respect to x

To calculate the derivative of V(x), we can use the power rule. We get: \[\frac{dV}{dx} = \frac{d}{dx}[\frac{20}{x^2-4}]\] First, we rewrite V(x) as a power of x: \(20(x^2-4)^{-1}\). Then, applying the power rule: \[\frac{dV}{dx}=-20(-1)(x^2-4)^{-2}(2x)\] Simplifying, we get: \[\frac{dV}{dx}=\frac{40x}{(x^2-4)^2}\]
02

Find the electric field E(x) at \(x = 4 \mu m\)

Now we have the derivative of V(x), which gives us the electric field E(x): \[E(x)=\frac{40x}{(x^2-4)^2}\] We want to calculate the electric field at \(x = 4 \mu m\). So we substitute the given value: \[E(4) = \frac{40(4)}{(4^2-4)^2}\]
03

Determine the direction of the electric field

Since E(x) has a positive value for \(x = 4 \mu m\), the electric field's direction points towards the positive x-direction. Now we compute the value of E(4): \[E(4) = \frac{40(4)}{(4^2-4)^2} = \frac{40(4)}{(16-4)^2} = \frac{40(4)}{12^2} = \frac{10}{9} V\mu m^{-1}\] The electric field at \(x = 4 \mu m\) is \(\frac{10}{9} V\mu m^{-1}\) and is found to be in positive x-direction. Hence, the correct answer is (C).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The electric potential \(\mathrm{V}\) is given as a function of distance \(\mathrm{x}\) (meter) by $\mathrm{V}=\left(5 \mathrm{x}^{2}+10 \mathrm{x}-9\right)\( volt. Value of electric field at \)\mathrm{x}=1$ is \(\ldots \ldots\) \((\mathrm{A})-20(\mathrm{v} / \mathrm{m})\) (B) \(6(\mathrm{v} / \mathrm{m})\) (C) \(11(\mathrm{v} / \mathrm{m})\) (D) \(-23(\mathrm{v} / \mathrm{m})\)

Charges \(+q\) and \(-q\) are placed at point \(A\) and \(B\) respectively which are a distance \(2 \mathrm{~L}\) apart, \(\mathrm{C}\) is the midpoint between \(\mathrm{A}\) and \(\mathrm{B}\). The work done in moving a charge \(+Q\) along the semicircle \(C R D\) is \(\ldots \ldots\) (A) $\left[(\mathrm{qQ}) /\left(2 \pi \mathrm{\epsilon}_{0} \mathrm{~L}\right)\right]$ (B) \(\left[(-q Q) /\left(6 \pi \in_{0} L\right)\right]\) (C) $\left[(\mathrm{qQ}) /\left(6 \pi \mathrm{e}_{0} \mathrm{~L}\right)\right]$ (D) \(\left[(q Q) /\left(4 \pi \in_{0} L\right)\right]\)

An electrical technician requires a capacitance of \(2 \mu \mathrm{F}\) in a circuit across a potential difference of \(1 \mathrm{KV}\). A large number of $1 \mu \mathrm{F}$ capacitors are available to him, each of which can withstand a potential difference of not than \(400 \mathrm{~V}\). suggest a possible arrangement that requires a minimum number of capacitors. (A) 2 rows with 2 capacitors (B) 4 rows with 2 capacitors (C) 3 rows with 4 capacitors (D) 6 rows with 3 capacitors

A ball of mass \(1 \mathrm{gm}\) and charge \(10^{-8} \mathrm{c}\) moves from a point \(\mathrm{A}\), where the potential is 600 volt to the point \(B\) where the potential is zero. Velocity of the ball of the point \(\mathrm{B}\) is $20 \mathrm{~cm} / \mathrm{s}\(. The velocity of the ball at the point \)\mathrm{A}$ will be \(\ldots \ldots\) (A) \(16.8(\mathrm{~m} / \mathrm{s})\) (B) \(22.8(\mathrm{~cm} / \mathrm{s})\) (C) \(228(\mathrm{~cm} / \mathrm{s})\) (D) \(168(\mathrm{~m} / \mathrm{s})\)

The circular plates \(\mathrm{A}\) and \(\mathrm{B}\) of a parallel plate air capacitor have a diameter of \(0.1 \mathrm{~m}\) and are $2 \times 10^{-3} \mathrm{~m}\( apart. The plates \)\mathrm{C}\( and \)\mathrm{D}$ of a similar capacitor have a diameter of \(0.1 \mathrm{~m}\) and are $3 \times 10^{-3} \mathrm{~m}\( apart. Plate \)\mathrm{A}\( is earthed. Plates \)\mathrm{B}$ and \(\mathrm{D}\) are connected together. Plate \(\mathrm{C}\) is connected to the positive pole of a \(120 \mathrm{~V}\) battery whose negative is earthed, The energy stored in the system is (A) \(0.1224 \mu \mathrm{J}\) (B) \(0.2224 \mu \mathrm{J}\) (C) \(0.4224 \mu \mathrm{J}\) (D) \(0.3224 \mu \mathrm{J}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free