Chapter 11: Problem 1620
A parallel plate capacitor has the space between its plates filled by two slabs of thickness \((\mathrm{d} / 2)\) each and dielectric constant \(\mathrm{K}_{1}\) and \(\mathrm{K}_{2}\) If \(\mathrm{d}\) is the plate separation of the capacitor, then capacity of the capacitor is .......... (A) \(\left[\left(2 \mathrm{~d} \in_{0}\right) / \mathrm{A}\right]\left[\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) /\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)\right]\) (B) \(\left[\left(2 \mathrm{~A} \in_{0}\right) / \mathrm{d}\right]\left[\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right) /\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right)\right]\) (C) \(\left[\left(2 \mathrm{Ad} \epsilon_{0}\right) / \mathrm{d}\right]\left[\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) /\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)\right]\) d] \(\left(K_{1}+K_{2}\right)\) (D) \(\left[\left(2 \mathrm{~A} \in_{0}\right) /\right.\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.