Chapter 11: Problem 1619
Iaking earth to be a metallic spheres, its capacity will approximately be (A) \(6.4 \times 10^{6} \mathrm{~F}\) (B) \(700 \mathrm{pF}\) (C) \(711 \mu \mathrm{F}\) (D) \(700 \mathrm{pF}\)
Chapter 11: Problem 1619
Iaking earth to be a metallic spheres, its capacity will approximately be (A) \(6.4 \times 10^{6} \mathrm{~F}\) (B) \(700 \mathrm{pF}\) (C) \(711 \mu \mathrm{F}\) (D) \(700 \mathrm{pF}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA simple pendulum consists of a small sphere of mass \(\mathrm{m}\) suspended by a thread of length \(\ell\). The sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength \(\mathrm{E}\) directed Vertically upwards. If the electrostatic force acting on the sphere is less than gravitational force the period of pendulum is (A) $\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}-(\mathrm{q} \mathrm{E} / \mathrm{m})\\}]^{(1 / 2)}$ (B) \(\mathrm{T}=2 \pi(\ell / \mathrm{g})^{(1 / 2)}\) \(\left.\left.\left.\mathrm{m}_{\mathrm{}}\right\\}\right\\}\right]^{(1 / 2)}\) (D) \(\mathrm{T}=2 \pi[(\mathrm{m} \ell / \mathrm{qE})]^{(1 / 2)}\) (C) \(\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}+(\mathrm{qE} / \mathrm{t}\)
If electron in ground state of \(\mathrm{H}\) -atom is assumed in rest then dipole moment of electron proton system of \(\mathrm{H}\) -atom is $\ldots \ldots\( Orbit radius of \)\mathrm{H}\( atom in ground state is \)0.56 \AA$. (A) \(0.253 \times 10^{-29} \mathrm{~m}\) (B) \(0.848 \times 10^{-29} \mathrm{~m}\) (C) \(0.305 \times 10^{-29} \mathrm{~m}\) (D) \(1.205 \times 10^{-28} \mathrm{~m}\)
The electric potential \(\mathrm{V}\) at any point $\mathrm{x}, \mathrm{y}, \mathrm{z}\( (all in meter) in space is given by \)\mathrm{V}=4 \mathrm{x}^{2}$ volt. The electric field at the point \((1 \mathrm{~m}, 0,2 \mathrm{~m})\) in \(\mathrm{Vm}^{-1}\) is \((\mathrm{A})+8 \mathrm{i} \wedge\) (B) \(-8 \mathrm{i} \wedge\) (C) \(-16 \mathrm{i}\) (D) \(+16 \mathrm{i}\)
Two electric charges \(12 \mu \mathrm{c}\) and \(-6 \mu \mathrm{c}\) are placed \(20 \mathrm{~cm}\) apart in air. There will be a point \(P\) on the line joining these charges and outside the region between them, at which the electric potential is zero. The distance of \(P\) from \(-6 \mu c\) charge is ..... (A) \(0.20 \mathrm{~m}\) (B) \(0.10 \mathrm{~m}\) (C) \(0.25 \mathrm{~m}\) (D) \(0.15 \mathrm{~m}\)
An electric dipole is placed along the \(\mathrm{x}\) -axis at the origin o. \(\mathrm{A}\) point \(P\) is at a distance of \(20 \mathrm{~cm}\) from this origin such that OP makes an angle \((\pi / 3)\) with the x-axis. If the electric field at P makes an angle \(\theta\) with the x-axis, the value of \(\theta\) would be \(\ldots \ldots \ldots\) (A) \((\pi / 3)+\tan ^{-1}(\sqrt{3} / 2)\) (B) \((\pi / 3)\) (C) \((2 \pi / 3)\) (D) \(\tan ^{-1}(\sqrt{3} / 2)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.