Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Iaking earth to be a metallic spheres, its capacity will approximately be (A) \(6.4 \times 10^{6} \mathrm{~F}\) (B) \(700 \mathrm{pF}\) (C) \(711 \mu \mathrm{F}\) (D) \(700 \mathrm{pF}\)

Short Answer

Expert verified
The capacitance of Earth, considering it to be a metallic sphere, can be calculated using the formula \(C = 4 \pi \varepsilon_0 R\), where \(\varepsilon_0\) is the permittivity of free space and \(R\) is the radius of Earth. Plugging in the values \(\varepsilon_0 \approx 8.85 \times 10^{-12} \mathrm{F/m}\) and \(R \approx 6.37 \times 10^6 \mathrm{m}\), we get \(C \approx 712.49 \times 10^{-6} \mathrm{F}\). Comparing this to the given options, the closest value is (C) \(711 \mu \mathrm{F}\), which is the correct answer.

Step by step solution

01

Insert the values into the formula

Now we will insert the values \(\varepsilon_0\) and \(R\) into the capacitance formula: \[C = 4 \pi (8.85 \times 10^{-12} \mathrm{F/m}) (6.37 \times 10^6 \mathrm{m})\]
02

Solve for capacitance

To solve for capacitance, we just need to do the arithmetic: \[C = 4 \pi(8.85 \times 10^{-12} \mathrm{F/m}) (6.37 \times 10^6 \mathrm{m})\] \[C = 4 \pi(56.4855 \times 10^{-6} \mathrm{F})\] Next, we multiply the values: \[C = 4 \pi(56.4855 \times 10^{-6} \mathrm{F}) \approx 712.49 \times 10^{-6} \mathrm{F}\]
03

Choose the correct option

The calculated value of Earth's capacitance is approximately \(712.49 \mu \mathrm{F}\). Comparing the calculated value to the given options, we find that option (C) \(711 \mu \mathrm{F}\) is the closest to our result. Hence, the answer is: (C) \(711 \mu \mathrm{F}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A simple pendulum consists of a small sphere of mass \(\mathrm{m}\) suspended by a thread of length \(\ell\). The sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength \(\mathrm{E}\) directed Vertically upwards. If the electrostatic force acting on the sphere is less than gravitational force the period of pendulum is (A) $\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}-(\mathrm{q} \mathrm{E} / \mathrm{m})\\}]^{(1 / 2)}$ (B) \(\mathrm{T}=2 \pi(\ell / \mathrm{g})^{(1 / 2)}\) \(\left.\left.\left.\mathrm{m}_{\mathrm{}}\right\\}\right\\}\right]^{(1 / 2)}\) (D) \(\mathrm{T}=2 \pi[(\mathrm{m} \ell / \mathrm{qE})]^{(1 / 2)}\) (C) \(\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}+(\mathrm{qE} / \mathrm{t}\)

If electron in ground state of \(\mathrm{H}\) -atom is assumed in rest then dipole moment of electron proton system of \(\mathrm{H}\) -atom is $\ldots \ldots\( Orbit radius of \)\mathrm{H}\( atom in ground state is \)0.56 \AA$. (A) \(0.253 \times 10^{-29} \mathrm{~m}\) (B) \(0.848 \times 10^{-29} \mathrm{~m}\) (C) \(0.305 \times 10^{-29} \mathrm{~m}\) (D) \(1.205 \times 10^{-28} \mathrm{~m}\)

The electric potential \(\mathrm{V}\) at any point $\mathrm{x}, \mathrm{y}, \mathrm{z}\( (all in meter) in space is given by \)\mathrm{V}=4 \mathrm{x}^{2}$ volt. The electric field at the point \((1 \mathrm{~m}, 0,2 \mathrm{~m})\) in \(\mathrm{Vm}^{-1}\) is \((\mathrm{A})+8 \mathrm{i} \wedge\) (B) \(-8 \mathrm{i} \wedge\) (C) \(-16 \mathrm{i}\) (D) \(+16 \mathrm{i}\)

Two electric charges \(12 \mu \mathrm{c}\) and \(-6 \mu \mathrm{c}\) are placed \(20 \mathrm{~cm}\) apart in air. There will be a point \(P\) on the line joining these charges and outside the region between them, at which the electric potential is zero. The distance of \(P\) from \(-6 \mu c\) charge is ..... (A) \(0.20 \mathrm{~m}\) (B) \(0.10 \mathrm{~m}\) (C) \(0.25 \mathrm{~m}\) (D) \(0.15 \mathrm{~m}\)

An electric dipole is placed along the \(\mathrm{x}\) -axis at the origin o. \(\mathrm{A}\) point \(P\) is at a distance of \(20 \mathrm{~cm}\) from this origin such that OP makes an angle \((\pi / 3)\) with the x-axis. If the electric field at P makes an angle \(\theta\) with the x-axis, the value of \(\theta\) would be \(\ldots \ldots \ldots\) (A) \((\pi / 3)+\tan ^{-1}(\sqrt{3} / 2)\) (B) \((\pi / 3)\) (C) \((2 \pi / 3)\) (D) \(\tan ^{-1}(\sqrt{3} / 2)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free