Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

4 Points charges each \(+q\) is placed on the circumference of a circle of diameter \(2 \mathrm{~d}\) in such a way that they form a square. The potential at the centre is \(\ldots \ldots .\) (A) 0 (B) \((4 \mathrm{kd} / \mathrm{q})\) (C) \((\mathrm{kd} / 4 \mathrm{q})\) (D) \((4 \mathrm{kq} / \mathrm{d})\)

Short Answer

Expert verified
The electric potential at the center of the circle is \(\frac{4kq}{d}\), which corresponds to option (D).

Step by step solution

01

Calculate side length of the square

Since the square is inscribed in a circle with diameter \(2d\), the diagonal of the square = diameter of the circle. We'll use the Pythagorean theorem to find the side length of the square: \(s^2 + s^2 = (2d)^2\) Solving for \(s\), we get: \(s = d\sqrt{2}\)
02

Calculate distance of each charge to the center

We'll use the Pythagorean theorem again to find the distance from each corner of the square (where the charges are placed) to the center of the circle. As the charges are equidistant from the center, we can find the distance of any one charge to the center. \(\frac{s}{2}^2 + \frac{s}{2}^2 = r^2\) Substituting the value of \(s\), we get: \(\frac{d\sqrt{2}}{2}^2 + \frac{d\sqrt{2}}{2}^2 = r^2\) On solving for \(r\), we get \(r = d\) #Step 2: Calculate the electric potential at the center of the circle#
03

Calculate the potential due to each charge

Using the formula for electric potential due to a point charge (\(V = k\frac{q}{r}\)), we can calculate the potential at the center due to one point charge: \(V_{1charge} = k\frac{q}{d}\)
04

Calculate the total potential at the center

Since there are 4 point charges and electric potential is a scalar quantity, we simply sum the contributions from each charge: \(V_{total} = 4 \times V_{1charge} = 4 \times k\frac{q}{d} = \frac{4kq}{d}\) So, the electric potential at the center of the circle is \(\frac{4kq}{d}\), which matches option (D).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A small conducting sphere of radius \(r\) is lying concentrically inside a bigger hollow conducting sphere of radius \(R\). The bigger and smaller sphere are charged with \(\mathrm{Q}\) and \(\mathrm{q}(\mathrm{Q}>\mathrm{q})\) and are insulated from each other. The potential difference between the spheres will be \(\ldots \ldots\) (A) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(q / r)-(Q / R)]\) (B) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(q / r)-(q / R)]\) (C) \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(Q / R)+(q / r)]\) (D) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right][(\mathrm{q} / \mathrm{R})-(\mathrm{Q} / \mathrm{r})]$

A battery is used to charge a parallel plate capacitor till the potential difference between the plates becomes equal to the electromotive force of the battery. The ratio of the energy stored in the capacitor and work done by the battery will be (A) \((1 / 2)\) (B) \((2 / 1)\) (C) 1 (D) \((1 / 4)\)

The capacitors of capacitance \(4 \mu \mathrm{F}, 6 \mu \mathrm{F}\) and $12 \mu \mathrm{F}$ are connected first in series and then in parallel. What is the ratio of equivalent capacitance in the two cases? (A) \(2: 3\) (B) \(11: 1\) (C) \(1: 11\) (D) \(1: 3\)

Two parallel plate air capacitors have their plate areas 100 and $500 \mathrm{~cm}^{2}$ respectively. If they have the same charge and potential and the distance between the plates of the first capacitor is \(0.5 \mathrm{~mm}\), what is the distance between the plates of the second capacitor ? (A) \(0.25 \mathrm{~cm}\) (B) \(0.50 \mathrm{~cm}\) (C) \(0.75 \mathrm{~cm}\) (D) \(1 \mathrm{~cm}\)

A simple pendulum consists of a small sphere of mass \(\mathrm{m}\) suspended by a thread of length \(\ell\). The sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength \(\mathrm{E}\) directed Vertically upwards. If the electrostatic force acting on the sphere is less than gravitational force the period of pendulum is (A) $\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}-(\mathrm{q} \mathrm{E} / \mathrm{m})\\}]^{(1 / 2)}$ (B) \(\mathrm{T}=2 \pi(\ell / \mathrm{g})^{(1 / 2)}\) \(\left.\left.\left.\mathrm{m}_{\mathrm{}}\right\\}\right\\}\right]^{(1 / 2)}\) (D) \(\mathrm{T}=2 \pi[(\mathrm{m} \ell / \mathrm{qE})]^{(1 / 2)}\) (C) \(\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}+(\mathrm{qE} / \mathrm{t}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free