Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A simple pendulum consists of a small sphere of mass \(\mathrm{m}\) suspended by a thread of length \(\ell\). The sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength \(\mathrm{E}\) directed Vertically upwards. If the electrostatic force acting on the sphere is less than gravitational force the period of pendulum is (A) \(\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}-(\mathrm{q} \mathrm{E} / \mathrm{m})\\}]^{(1 / 2)}\) (B) \(\mathrm{T}=2 \pi(\ell / \mathrm{g})^{(1 / 2)}\) \(\left.\left.\left.\mathrm{m}_{\mathrm{}}\right\\}\right\\}\right]^{(1 / 2)}\) (D) \(\mathrm{T}=2 \pi[(\mathrm{m} \ell / \mathrm{qE})]^{(1 / 2)}\) (C) \(\mathrm{T}=2 \pi[\ell /\\{\mathrm{g}+(\mathrm{qE} / \mathrm{t}\)

Short Answer

Expert verified
The short answer to the question is: The period of the pendulum is given by (A): \(T = 2\pi\left[\frac{l}{\{g - (\frac{qE}{m})\}}\right]^{\frac{1}{2}}\).

Step by step solution

01

Analyze the forces acting on the pendulum

There are two forces acting on the pendulum sphere: the gravitational force (F_gravity) and the electrostatic force (F_electric). The gravitational force is given by: \[F_{gravity} = m*g\] where m is the mass of the sphere and g is the acceleration due to gravity. The electrostatic force can be determined using Coulomb's Law: \[F_{electric} = q*E\] where q is the charge on the sphere and E is the electric field strength. Given that the electrostatic force is less than the gravitational force, we have: \[F_{electric} < F_{gravity}\]
02

Determine the effective gravitational force acting on the pendulum

Since both forces are acting vertically, we can determine the effective gravitational force (F_eff) acting on the sphere. \[F_{eff} = F_{gravity} - F_{electric} = m*g - q*E\]
03

Calculate the period of the pendulum

For a simple pendulum, the period (T) is given by the equation: \[T = 2 \pi \sqrt{\frac{l}{g_{eff}}}\] Substituting the value of the effective gravitational force (F_eff) acting on the pendulum, we get: \[T = 2\pi\sqrt{\frac{l}{\frac{F_{eff}}{m}}}\] Substitute the value of \(F_{eff}\): \[T = 2\pi\sqrt{\frac{l}{\frac{m*g - q*E}{m}}}\] Simplify the equation: \[T = 2\pi\sqrt{\frac{l}{g - \frac{qE}{m}}}\] Comparing this result with the given options, the answer is (A): \[T = 2\pi[\frac{l}{\{g - (\frac{qE}{m})\}}]^{\frac{1}{2}}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

If an electron moves from rest from a point at which potential is 50 volt, to another point at which potential is 70 volt, then its kinetic energy in the final state will be \(\ldots .\) (A) \(1 \mathrm{~N}\) (B) \(3.2 \times 10^{-18} \mathrm{~J}\) (C) \(3.2 \times 10^{-10} \mathrm{~J}\) (D) 1 dyne

A simple pendulum of period \(\mathrm{T}\) has a metal bob which is negatively charged. If it is allowed to oscillate above a positively charged metal plate, its period will ...... (A) Remains equal to \(\mathrm{T}\) (B) Less than \(\mathrm{T}\) (C) Infinite (D) Greater than \(\mathrm{T}\)

A parallel plate air capacitor has a capacitance \(\mathrm{C}\). When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be (A) \(200 \%\) (B) \(33.3 \%\) (C) \(400 \%\) (D) \(66.6 \%\)

The circular plates \(\mathrm{A}\) and \(\mathrm{B}\) of a parallel plate air capacitor have a diameter of \(0.1 \mathrm{~m}\) and are \(2 \times 10^{-3} \mathrm{~m}\) apart. The plates \(\mathrm{C}\) and \(\mathrm{D}\) of a similar capacitor have a diameter of \(0.1 \mathrm{~m}\) and are \(3 \times 10^{-3} \mathrm{~m}\) apart. Plate \(\mathrm{A}\) is earthed. Plates \(\mathrm{B}\) and \(\mathrm{D}\) are connected together. Plate \(\mathrm{C}\) is connected to the positive pole of a \(120 \mathrm{~V}\) battery whose negative is earthed, The energy stored in the system is (A) \(0.1224 \mu \mathrm{J}\) (B) \(0.2224 \mu \mathrm{J}\) (C) \(0.4224 \mu \mathrm{J}\) (D) \(0.3224 \mu \mathrm{J}\)

Two identical capacitors have the same capacitance \(\mathrm{C}\). one of them is charged to a potential \(\mathrm{V}_{1}\) and the other to \(\mathrm{V}_{2}\). The negative ends of the capacitors are connected together. When the positive ends are also connected, the decrease in energy of the combined system is (A) \((1 / 4) \mathrm{C}\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right)\) (B) \((1 / 4) \mathrm{C}\left(\mathrm{V}_{1}^{2}+\mathrm{V}_{2}^{2}\right)\) (C) \((1 / 4) \mathrm{C}\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)^{2}\) (D) \((1 / 4) \mathrm{C}\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)^{2}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free