Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
Chapter 11: Problem 1533
For the system shown in figure, if the resultant force on q is zero, then \(q=\ldots \ldots \ldots\) (A) \(-2 \sqrt{2} \mathrm{Q}\) (B) \(2 \sqrt{2} \mathrm{Q}\) (C) \(2 \sqrt{3} \mathrm{Q}\) (D) \(-3 \sqrt{2} Q\)
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo point charges \(100 \mu \mathrm{c}\) and \(5 \mu \mathrm{c}\) are placed at points \(\mathrm{A}\) and \(B\) respectively with \(A B=40 \mathrm{~cm}\). The work done by external force in displacing the charge \(5 \mu \mathrm{c}\) from \(\mathrm{B}\) to \(\mathrm{C}\) where \(\mathrm{BC}=30 \mathrm{~cm}\), angle \(\mathrm{ABC}=(\pi / 2)\) and \(\left[1 /\left(4 \pi \epsilon_{0}\right)\right]\) \(=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{c}^{2}\). (A) \(9 \mathrm{~J}\) (B) \((9 / 25) \mathrm{J}\) (C) \((81 / 20) \mathrm{J}\) (D) \(-(9 / 4) \mathrm{J}\)
In Millikan's oil drop experiment an oil drop carrying a charge Q is held stationary by a p.d. \(2400 \mathrm{v}\) between the plates. To keep a drop of half the radius stationary the potential difference had to be made $600 \mathrm{v}$. What is the charge on the second drop? (A) \([(3 Q) / 2]\) (B) \((\mathrm{Q} / 4)\) (C) \(Q\) (D) \((\mathrm{Q} / 2)\)
Three identical spheres each having a charge \(\mathrm{q}\) and radius \(R\), are kept in such a way that each touches the other two spheres. The magnitude of the electric force on any sphere due to other two is \(\ldots \ldots \ldots\) (A) $(\mathrm{R} / 2)\left[1 /\left(4 \pi \epsilon_{0}\right)\right](\sqrt{5} / 4)(\mathrm{q} / \mathrm{R})^{2}$ (B) $\left[1 /\left(8 \pi \epsilon_{0}\right)\right](\sqrt{2} / 3)(\mathrm{q} / \mathrm{R})^{2}$ (C) $\left[1 /\left(4 \pi \epsilon_{0}\right)\right](\sqrt{3} / 4)(\mathrm{q} / \mathrm{R})^{2}$ (D) $-\left[1 /\left(8 \pi \epsilon_{0}\right)\right](\sqrt{3} / 2)(\mathrm{q} / \mathrm{R})^{2}$
Let $\mathrm{P}(\mathrm{r})\left[\mathrm{Q} /\left(\pi \mathrm{R}^{4}\right)\right] \mathrm{r}$ be the charge density distribution for a solid sphere of radius \(\mathrm{R}\) and total charge \(\mathrm{Q}\). For a point ' \(\mathrm{P}\) ' inside the sphere at distance \(\mathrm{r}_{1}\) from the centre of the sphere the magnitude of electric field is (A) $\left[\mathrm{Q} /\left(4 \pi \epsilon_{0} \mathrm{r}_{1}^{2}\right)\right]$ (B) $\left[\left(\mathrm{Qr}_{1}^{2}\right) /\left(4 \pi \in{ }_{0} \mathrm{R}^{4}\right)\right]$ (C) $\left[\left(\mathrm{Qr}_{1}^{2}\right) /\left(3 \pi \epsilon_{0} \mathrm{R}^{4}\right)\right]$
A Semicircular rod is charged uniformly with a total charge \(\mathrm{Q}\) coulomb. The electric field intensity at the centre of curvature is $\ldots \ldots \ldots$ (A) \(\left[(2 \mathrm{KQ}) /\left(\pi \mathrm{R}^{2}\right)\right]\) (B) \(\left[(3 \mathrm{KQ}) /\left(\pi \mathrm{R}^{2}\right)\right]\) (C) \(\left[(\mathrm{KQ}) /\left(\pi \mathrm{R}^{2}\right)\right]\) (D) \(\left[(4 \mathrm{KQ}) /\left(\pi \mathrm{R}^{2}\right)\right]\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.