Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two small conducting sphere of equal radius have charges \(+1 \mathrm{c}\) and \(-2 \mathrm{c}\) respectively and placed at a distance \(\mathrm{d}\) from each other experience force \(F_{1}\). If they are brought in contact and separated to the same distance, they experience force \(F_{2}\). The ratio of \(F_{1}\) to \(F_{2}\) is \(\ldots \ldots \ldots \ldots\) (A) \(-8: 1\) (B) \(1: 2\) (C) \(1: 8\) (D) \(-2: 1\)

Short Answer

Expert verified
The ratio of \(F_1\) to \(F_2\) is \(-8:1\).

Step by step solution

01

Calculate force F1

Use Coulomb's Law formula for the force between two charged objects: \(F_1 = k \frac{Q_1 Q_2}{d^2}\) where, k is Coulomb's constant = \(9 \times 10^9 Nm^2C^{-2}\), \(Q_1 = +1c\), \(Q_2 = -2c\), and d is the distance between the spheres. Plug in the values: \(F_1 = 9 \times 10^9 \frac{(+1)(-2)}{d^2}\)
02

Determine redistributed charges

When the spheres come into contact, the total charge becomes, \(Q_{total} = Q_1 + Q_2 = +1c - 2c = -1c\) Since the spheres have equal radius, the charge will be distributed equally between them after touching, so each sphere gets half of the total charge: \(Q_{1(new)} = Q_{2(new)} = -\frac{1}{2}c\)
03

Calculate force F2

Use Coulomb's Law formula again, now with the redistributed charges of the spheres. \(F_2 = k \frac{Q_{1(new)} Q_{2(new)}}{d^2}\) Plug in the values: \(F_2 = 9 \times 10^9 \frac{(-\frac{1}{2})(-\frac{1}{2})}{d^2}\)
04

Calculate the ratio of F1 to F2

Now, we need the ratio of F1 to F2. We can cancel the common factors on both sides, so we get: \(\frac{F_1}{F_2} = \frac{[-2]}{[\frac{1}{4}]}\) Solve it: \(\frac{F_1}{F_2} = -8\)
05

Select the correct option

The ratio of F1 to F2 is -8:1. So, the correct answer is: (A) -8:1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two positive point charges of \(12 \mu \mathrm{c}\) and \(8 \mu \mathrm{c}\) are \(10 \mathrm{~cm}\) apart each other. The work done in bringing them $4 \mathrm{~cm}$ closer is .... (A) \(5.8 \mathrm{~J}\) (B) \(13 \mathrm{eV}\) (C) \(5.8 \mathrm{eV}\) (D) \(13 \mathrm{~J}\)

A parallel plate capacitor with air between the plates has a capacitance of $9 \mathrm{pF}\(. The separation between its plates is \)\mathrm{d}$. The space between the plates is now filled with two dielectrics. One of the dielectric constant \(\mathrm{K}_{1}=3\) and thickness \(\mathrm{d} / 3\) while the other one has dielectric constant \(\mathrm{K}_{2}=6\) and thickness \(2 \mathrm{~d} / 3\). Capacitance of the capacitor is now (A) \(1.8 \mathrm{pF}\) (B) \(20.25 \mathrm{pF}\) (C) \(40.5 \mathrm{pF}\) (D) \(45 \mathrm{pF}\)

A parallel plate air capacitor has a capacitance \(\mathrm{C}\). When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be (A) \(200 \%\) (B) \(33.3 \%\) (C) \(400 \%\) (D) \(66.6 \%\)

Two identical metal plates are given positive charges \(\mathrm{Q}_{1}\) and \(\mathrm{Q}_{2}\left(<\mathrm{Q}_{1}\right)\) respectively. If they are now brought close to gather to form a parallel plate capacitor with capacitance \(\mathrm{c}\), the potential difference between them is (A) \(\left[\left(Q_{1}+Q_{2}\right) /(2 c)\right]\) (B) \(\left[\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right) / \mathrm{c}\right]\) (C) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) /(2 \mathrm{c})\right]\) (D) \(\left[\left(\mathrm{Q}_{1}-\mathrm{Q}_{2}\right) / \mathrm{c}\right]\)

Two air capacitors \(A=1 \mu F, B=4 \mu F\) are connected in series with $35 \mathrm{~V}\( source. When a medium of dielectric constant \)\mathrm{K}=3$ is introduced between the plates of \(\mathrm{A}\), change on the capacitor changes by (A) \(16 \mu \mathrm{c}\) (B) \(32 \mu \mathrm{c}\) (C) \(28 \mu \mathrm{c}\) (D) \(60 \mu \mathrm{c}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free