Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A closed organ pipe has fundamental frequency \(100 \mathrm{~Hz}\). What frequencies will be produced if its other end is also opened? (A) \(200,400,600,800 \ldots \ldots\) (B) \(200,300,400,500 \ldots \ldots\) (C) \(100,300,500,700 \ldots \ldots\) (D) \(100,200,300,400 \ldots \ldots\)

Short Answer

Expert verified
When the other end of the organ pipe is opened, the frequencies produced are 200 Hz, 400 Hz, 600 Hz, 800 Hz, and so on. The correct answer is (A).

Step by step solution

01

Understanding the formula for fundamental frequency

The fundamental frequency of a closed organ pipe is given by \(f_{closed}=\frac{v}{4L}\), where \(v\) is the speed of sound and \(L\) is the length of the pipe. For an open organ pipe, it is given by \(f_{open}=\frac{v}{2L}\).
02

Using the given information

The problem states that the fundamental frequency of theclosed organ pipe is 100 Hz. We can use this information to find the length of the pipe. From the formula, \(f_{closed}=\frac{v}{4L}\), we can write the equation: \(100 = \frac{v}{4L}\)
03

Find the fundamental frequency of open organ pipe

Now we can find the fundamental frequency of the open organ pipe using the formula: \(f_{open}=\frac{v}{2L}\). Since we have the equation \(100 = \frac{v}{4L}\), we can multiply both sides by 2 to get: \(200 = \frac{v}{2L}\). Thus, when opened, the organ pipe has a fundamental frequency of 200 Hz.
04

Find the higher order frequencies of open organ pipe

For an open organ pipe, the higher-order frequencies are given by the formula \(f_n = n\cdot f_{open}\), where \(n\) is an integer. Using the fundamental frequency of 200 Hz for the open organ pipe, we can find the next frequencies by multiplying by integers: \(f_2 = 2 \cdot 200 = 400~\text{Hz}\) \(f_3 = 3 \cdot 200 = 600~\text{Hz}\) \(f_4 = 4 \cdot 200 = 800~\text{Hz}\) Thus, the frequencies produced when the other end of the organ pipe is also opened are 200, 400, 600, 800... The correct answer is (A).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What should be the speed of a source of sound moving towards a stationary listener, so that the frequency of sound heard by the listener is double the frequency of sound produced by the source? \\{Speed of sound wave is \(\mathrm{v}\\}\) (A) \(\mathrm{v}\) (B) \(2 \mathrm{v}\) (C) \(\mathrm{v} / 2\) (D) \(\mathrm{v} / 4\)

A block having mass \(\mathrm{M}\) is placed on a horizontal frictionless surface. This mass is attached to one end of a spring having force constant \(\mathrm{k}\). The other end of the spring is attached to a rigid wall. This system consisting of spring and mass \(\mathrm{M}\) is executing SHM with amplitude \(\mathrm{A}\) and frequency \(\mathrm{f}\). When the block is passing through the mid-point of its path of motion, a body of mass \(\mathrm{m}\) is placed on top of it, as a result of which its amplitude and frequency changes to \(\mathrm{A}^{\prime}\) and \(\mathrm{f}\). The ratio of frequencies \((\mathrm{f} / \mathrm{f})=\ldots \ldots \ldots\) (A) \(\sqrt{\\{} \mathrm{M} /(\mathrm{m}+\mathrm{M})\\}\) (B) \(\sqrt{\\{\mathrm{m} /(\mathrm{m}+\mathrm{M})\\}}\) (C) \(\sqrt{\\{\mathrm{MA} / \mathrm{mA}}\\}\) (D) \(\sqrt{[}\\{(\mathrm{M}+\mathrm{m}) \mathrm{A}\\} / \mathrm{mA}]\)

The bob of a simple pendulum having length ' \(\ell\) ' is displaced from its equilibrium position by an angle of \(\theta\) and released. If the velocity of the bob, while passing through its equilibrium position is \(\mathrm{v}\), then \(\mathrm{v}=\ldots \ldots \ldots\) (A) \(\sqrt{\\{2 g \ell(1-\cos \theta)\\}}\) (B) \(\sqrt{\\{2 g \ell(1+\sin \theta)\\}}\) (C) \(\sqrt{\\{2 g \ell(1-\sin \theta)\\}}\) (D) \(\sqrt{\\{2 g \ell(1+\cos \theta)\\}}\)

Equation for a progressive harmonic wave is given by $\mathrm{y}=8 \sin 2 \pi(0.1 \mathrm{x}-2 \mathrm{t})\(, where \)\mathrm{x}\( and \)\mathrm{y}$ are in \(\mathrm{cm}\) and \(\mathrm{t}\) is in seconds. What will be the phase difference between two particles of this wave separated by a distance of \(2 \mathrm{~cm} ?\) (A) \(18^{\circ}\) (B) \(36^{\circ}\) (C) \(72^{\circ}\) (D) \(54^{\circ}\)

Two masses \(m_{1}\) and \(m_{2}\) are attached to the two ends of a massless spring having force constant \(\mathrm{k}\). When the system is in equilibrium, if the mass \(\mathrm{m}_{1}\) is detached, then the angular frequency of mass \(m_{2}\) will be \(\ldots \ldots \ldots .\) (A) \(\sqrt{\left(\mathrm{k} / \mathrm{m}_{1}\right)}\) (B) \(\sqrt{\left(\mathrm{k} / \mathrm{m}^{2}\right)}\) (C) \(\sqrt{\left(k / m_{2}\right)+m_{1}}\) (D) \(\sqrt{\left\\{k /\left(m_{1}+m_{2}\right)\right\\}}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free