Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Twenty four tuning forks are arranged in such a way that each fork produces 6 beats/s with the preceding fork. If the frequency of the last tuning fork is double than the first fork, then the frequency of the second tuning fork is \(\ldots \ldots\) (A) 132 (B) 138 (C) 276 (D) 144

Short Answer

Expert verified
The frequency of the second tuning fork is 144 Hz.

Step by step solution

01

Understanding the concept of beats/s between two tuning forks

Beat frequency is the difference in frequencies between two waves meeting at the same time and place. In this case, each tuning fork produces 6 beats/s with the preceding fork, which means the difference in frequency between consecutive forks is 6 Hz.
02

Create an equation representing the relationship between the frequencies of the forks

Let f1 represent the frequency of the first fork. Then the frequency of the second fork can be expressed as f1 + 6, the third fork as f1 + 12, and so on. So, the frequency of the nth fork can be represented as f1 + 6(n - 1), where n is the position of the fork in the sequence. We are given that the frequency of the last fork, which is the 24th fork, is double the frequency of the first fork. So, we can write this as f1 + 6(24 - 1) = 2f1.
03

Solve for the frequency of the first fork

Now, we can solve the equation f1 + 6(24 - 1) = 2f1 to find the frequency of the first fork, f1: f1 + 6(23) = 2f1 f1 + 138 = 2f1 138 = f1 So, the frequency of the first fork is 138 Hz.
04

Find the frequency of the second fork

Now that we know the frequency of the first fork, we can determine the frequency of the second fork using the difference given at the start: Frequency of the second fork = f1 + 6 = 138 + 6 = 144 Hz Thus, the frequency of the second tuning fork is 144 Hz. The correct answer is (D) 144.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For particles \(\mathrm{A}\) and \(\mathrm{B}\) executing S.H.M., the equation for displacement is given by $\mathrm{y}_{1}=0.1 \sin (100 \mathrm{t}+\mathrm{p} / 3)$ and \(\mathrm{y}_{2}=0.1\) cos pt respectively. The phase difference between velocity of particle \(\mathrm{A}\) with respect to that of \(\mathrm{B}\) is \(\ldots \ldots\) \((\mathrm{A})-(\pi / 3)\) (B) \((\pi / 6)\) (C) \(-(\pi / 6)\) (D) \((\pi / 3)\)

A rocket is moving at a speed of \(130 \mathrm{~m} / \mathrm{s}\) towards a stationary target. While moving, it emits a wave of frequency $800 \mathrm{~Hz}$. Calculate the frequency of the sound as detected by the target. (Speed of wave \(=330 \mathrm{~m} / \mathrm{s}\) ) (A) \(1320 \mathrm{~Hz}\) (B) \(2540 \mathrm{~Hz}\) (C) \(1270 \mathrm{~Hz}\) (D) \(660 \mathrm{~Hz}\)

If the kinetic energy of a particle executing S.H.M. is given by \(\mathrm{K}=\mathrm{K}_{0} \cos ^{2} \omega \mathrm{t}\), then the displacement of the particle is given by \(\ldots \ldots\) (A) $\left\\{\mathrm{K}_{0} / \mathrm{m} \omega^{2}\right\\} \sin \omega \mathrm{t}$ (B) $\left\\{\left(2 \mathrm{~K}_{0}\right) /\left(\mathrm{m} \omega^{2}\right)\right\\}^{1 / 2} \sin \omega t$ (C) \(\left\\{2 \omega^{2} / \mathrm{mK}_{0}\right\\} \sin \omega t\) (D) $\left\\{2 \mathrm{~K}_{0} / \mathrm{m} \omega\right\\}^{1 / 2} \sin \omega t$

If two SHM's are given by the equation $\mathrm{y}_{1}=0.1 \sin [\pi \mathrm{t}+(\pi / 3)]\( and \)\mathrm{y}_{2}=0.1 \cos \pi \mathrm{t}$, then the phase difference between the velocity of particle 1 and 2 is \(\ldots \ldots \ldots\) (A) \(\pi / 6\) (B) \(-\pi / 3\) (C) \(\pi / 3\) (D) \(-\pi / 6\)

If two almost identical waves having frequencies \(\mathrm{n}_{1}\) and \(\mathrm{n}_{2}\), produced one after the other superposes then the time interval to obtain a beat of maximum intensity is \(\ldots \ldots \ldots .\) (A) \(\left\\{1 /\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)\right\\}\) (B) \(\left(1 / \mathrm{n}_{1}\right)-\left(1 / \mathrm{n}_{2}\right)\) (C) \(\left(1 / \mathrm{n}_{1}\right)+\left(1 / \mathrm{n}_{2}\right)\) (D) \(\left\\{1 /\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)\right\\}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free