Chapter 10: Problem 1440
If two antinodes and three nodes are formed in a distance of \(1.21 \AA\), then the wavelength of the stationary wave is (A) \(2.42 \AA\) (B) \(6.05 \AA\) (C) \(3.63 \AA\) (D) \(1.21 \AA\)
Chapter 10: Problem 1440
If two antinodes and three nodes are formed in a distance of \(1.21 \AA\), then the wavelength of the stationary wave is (A) \(2.42 \AA\) (B) \(6.05 \AA\) (C) \(3.63 \AA\) (D) \(1.21 \AA\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA string of length \(70 \mathrm{~cm}\) is stretched between two rigid supports. The resonant frequency for this string is found to be \(420 \mathrm{~Hz}\) and \(315 \mathrm{~Hz}\). If there are no resonant frequencies between these two values, then what would be the minimum resonant frequency of this string ? (A) \(10.5 \mathrm{~Hz}\) (B) \(1.05 \mathrm{~Hz}\) (C) \(105 \mathrm{~Hz}\) (D) \(1050 \mathrm{~Hz}\)
An open organ pipe has fundamental frequency \(100 \mathrm{~Hz}\). What frequency will be produced if its one end is closed? (A) \(100,200,300, \ldots\) (B) \(50,150,250 \ldots .\) (C) \(50,100,200,300 \ldots \ldots\) (D) \(50,100,150,200 \ldots \ldots\)
The equation for displacement of a particle at time \(t\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). The maximum acceleration of the particle is $\ldots \ldots . . \mathrm{cm} / \mathrm{s}^{2}$. (A) 4 (B) 12 (C) 20 (D) 28
When two sound waves having amplitude A, angular frequency \(\omega\) and a phase difference of \(\pi / 2\) superposes, the maximum amplitude and angular frequency of the resultant wave is \(\ldots \ldots \ldots \ldots\) (A) \(\sqrt{2} \mathrm{~A}, \omega\) (B) \((\mathrm{A} / \sqrt{2}),(\omega / 2)\) (C) \((\mathrm{A} / \sqrt{2}), \omega\) (D) \(\sqrt{2} \mathrm{~A},(\omega / 2)\)
If \((1 / 4)\) of a spring having length \(\ell\) is cutoff, then what will be the spring constant of remaining part? (A) \(\mathrm{k}\) (B) \(4 \mathrm{k}\) (C) \((4 \mathrm{k} / 3)\) (D) \((3 \mathrm{k} / 4)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.