Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If two antinodes and three nodes are formed in a distance of \(1.21 \AA\), then the wavelength of the stationary wave is (A) \(2.42 \AA\) (B) \(6.05 \AA\) (C) \(3.63 \AA\) (D) \(1.21 \AA\)

Short Answer

Expert verified
The wavelength of the stationary wave is 1.21 Å, which corresponds to option (D). So, the correct answer is (D) \(1.21 \AA\).

Step by step solution

01

Determine the segments between nodes and antinodes

The given information states that there are two antinodes and three nodes within a distance of 1.21 Å. In a stationary wave, an antinode is formed between every pair of adjacent nodes. Therefore, there are two segments between nodes and antinodes. Each of these segments is half a wavelength long.
02

Calculate the total wavelength

Since we have two segments that are each half a wavelength long, their total length will be equal to one complete wavelength. The total length of these segments is given as 1.21 Å. Therefore, the wavelength of the stationary wave is 1.21 Å.
03

Identify the correct answer

The wavelength of the stationary wave is 1.21 Å, which corresponds to option (D). So, the correct answer is (D) \(1.21 \AA\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A string of length \(70 \mathrm{~cm}\) is stretched between two rigid supports. The resonant frequency for this string is found to be \(420 \mathrm{~Hz}\) and \(315 \mathrm{~Hz}\). If there are no resonant frequencies between these two values, then what would be the minimum resonant frequency of this string ? (A) \(10.5 \mathrm{~Hz}\) (B) \(1.05 \mathrm{~Hz}\) (C) \(105 \mathrm{~Hz}\) (D) \(1050 \mathrm{~Hz}\)

An open organ pipe has fundamental frequency \(100 \mathrm{~Hz}\). What frequency will be produced if its one end is closed? (A) \(100,200,300, \ldots\) (B) \(50,150,250 \ldots .\) (C) \(50,100,200,300 \ldots \ldots\) (D) \(50,100,150,200 \ldots \ldots\)

The equation for displacement of a particle at time \(t\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). The maximum acceleration of the particle is $\ldots \ldots . . \mathrm{cm} / \mathrm{s}^{2}$. (A) 4 (B) 12 (C) 20 (D) 28

When two sound waves having amplitude A, angular frequency \(\omega\) and a phase difference of \(\pi / 2\) superposes, the maximum amplitude and angular frequency of the resultant wave is \(\ldots \ldots \ldots \ldots\) (A) \(\sqrt{2} \mathrm{~A}, \omega\) (B) \((\mathrm{A} / \sqrt{2}),(\omega / 2)\) (C) \((\mathrm{A} / \sqrt{2}), \omega\) (D) \(\sqrt{2} \mathrm{~A},(\omega / 2)\)

If \((1 / 4)\) of a spring having length \(\ell\) is cutoff, then what will be the spring constant of remaining part? (A) \(\mathrm{k}\) (B) \(4 \mathrm{k}\) (C) \((4 \mathrm{k} / 3)\) (D) \((3 \mathrm{k} / 4)\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free