Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the resultant of two waves having amplitude \(\mathrm{b}\) is \(\mathrm{b}\), then the phase difference between the two waves is (A) \(120^{\circ}\) (B) \(60^{\circ}\) (C) \(90^{\circ}\) (D) \(180^{\circ}\)

Short Answer

Expert verified
The phase difference between the two waves is \(90^{\circ}\).

Step by step solution

01

Write down the superposition equation for two waves with amplitude b and phase difference φ

The superposition equation for the resultant of two waves with amplitude b and a phase difference of φ is: \[R = \sqrt{b^2 + b^2 + 2bb \cos(\phi)}\]
02

Solve the equation for R=b

Since we know that R = b, we can substitute it in the equation and solve for φ to find the phase difference. \[b = \sqrt{b^2 + b^2 + 2bb \cos(\phi)}\]
03

Solve for the phase difference φ

We will now simplify the equation and solve for φ: \[b^2 = b^2 + b^2 + 2b^2 \cos(\phi)\] \[0 = b^2 + 2b^2 \cos(\phi)\] Using the property for cos(θ) : \[\cos(90^{\circ}- \phi)=-\cos(\phi)\] Divide by b^2 on each side of the equation: \[0 = 1 + 2 \cos(\phi)\] Now, substitute the new property of cos(θ) in the equation, \[0 = 1 - 2\cos(90^{\circ} - \phi)\]
04

Discard the possible multiple solutions

The above equation can have multiple solutions for the value of φ, as the equation depends on cos(θ). However, it is important to consider that the phase difference must be within the range from 0° to 180°.
05

Find the correct option

Comparing our equation with the given options, we find a match with the option (C): (C) \(90^{\circ}\) Therefore, the phase difference between the two waves is \(90^{\circ}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A body of mass \(1 \mathrm{~kg}\) suspended from the free end of a spring having force constant \(400 \mathrm{Nm}^{-1}\) is executing S.H.M. When the total energy of the system is 2 joule, the maximum acceleration is $\ldots \ldots . \mathrm{ms}^{-2}$. (A) \(8 \mathrm{~ms}^{-2}\) (B) \(10 \mathrm{~ms}^{-2}\) (C) \(40 \mathrm{~ms}^{-2}\) (D) \(40 \mathrm{cms}^{-2}\)

A body having mass \(5 \mathrm{~g}\) is executing S.H.M. with an amplitude of \(0.3 \mathrm{~m}\). If the periodic time of the system is $(\pi / 10) \mathrm{s}\(, then the maximum force acting on body is \)\ldots \ldots \ldots \ldots$ (A) \(0.6 \mathrm{~N}\) (B) \(0.3 \mathrm{~N}\) (C) \(6 \mathrm{~N}\) (D) \(3 \mathrm{~N}\)

As shown in figure, two light springs having force constants \(\mathrm{k}_{1}=1.8 \mathrm{~N} \mathrm{~m}^{-1}\) and $\mathrm{k}_{2}=3.2 \mathrm{~N} \mathrm{~m}^{-1}$ and a block having mass \(\mathrm{m}=200 \mathrm{~g}\) are placed on a frictionless horizontal surface. One end of both springs are attached to rigid supports. The distance between the free ends of the spring is \(60 \mathrm{~cm}\) and the block is moving in this gap with a speed \(\mathrm{v}=120 \mathrm{~cm} \mathrm{~s}^{-1}\).What will be the periodic time of the block, between the two springs? (A) \(1+(5 \pi / 6) \mathrm{s}\) (B) \(1+(7 \pi / 6) \mathrm{s}\) (C) \(1+(5 \pi / 12) \mathrm{s}\) (D) \(1+(7 \pi / 12) \mathrm{s}\)

The equation for displacement of a particle at time \(\mathrm{t}\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). If the mass of the particle is \(5 \mathrm{gm}\), then the total energy of the particle is \(\ldots \ldots \ldots\) erg (A) 250 (B) 125 (C) 500 (D) 375

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\). (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\) Statement \(-1:\) The periodic time of a simple pendulum increases on the surface of moon. Statement \(-2:\) Moon is very small as compared to Earth. (A) a (B) \(\mathrm{b}\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free