Chapter 10: Problem 1439
If the resultant of two waves having amplitude \(\mathrm{b}\) is \(\mathrm{b}\), then the phase difference between the two waves is (A) \(120^{\circ}\) (B) \(60^{\circ}\) (C) \(90^{\circ}\) (D) \(180^{\circ}\)
Chapter 10: Problem 1439
If the resultant of two waves having amplitude \(\mathrm{b}\) is \(\mathrm{b}\), then the phase difference between the two waves is (A) \(120^{\circ}\) (B) \(60^{\circ}\) (C) \(90^{\circ}\) (D) \(180^{\circ}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeA body of mass \(1 \mathrm{~kg}\) suspended from the free end of a spring having force constant \(400 \mathrm{Nm}^{-1}\) is executing S.H.M. When the total energy of the system is 2 joule, the maximum acceleration is $\ldots \ldots . \mathrm{ms}^{-2}$. (A) \(8 \mathrm{~ms}^{-2}\) (B) \(10 \mathrm{~ms}^{-2}\) (C) \(40 \mathrm{~ms}^{-2}\) (D) \(40 \mathrm{cms}^{-2}\)
A body having mass \(5 \mathrm{~g}\) is executing S.H.M. with an amplitude of \(0.3 \mathrm{~m}\). If the periodic time of the system is $(\pi / 10) \mathrm{s}\(, then the maximum force acting on body is \)\ldots \ldots \ldots \ldots$ (A) \(0.6 \mathrm{~N}\) (B) \(0.3 \mathrm{~N}\) (C) \(6 \mathrm{~N}\) (D) \(3 \mathrm{~N}\)
As shown in figure, two light springs having force constants \(\mathrm{k}_{1}=1.8 \mathrm{~N} \mathrm{~m}^{-1}\) and $\mathrm{k}_{2}=3.2 \mathrm{~N} \mathrm{~m}^{-1}$ and a block having mass \(\mathrm{m}=200 \mathrm{~g}\) are placed on a frictionless horizontal surface. One end of both springs are attached to rigid supports. The distance between the free ends of the spring is \(60 \mathrm{~cm}\) and the block is moving in this gap with a speed \(\mathrm{v}=120 \mathrm{~cm} \mathrm{~s}^{-1}\).What will be the periodic time of the block, between the two springs? (A) \(1+(5 \pi / 6) \mathrm{s}\) (B) \(1+(7 \pi / 6) \mathrm{s}\) (C) \(1+(5 \pi / 12) \mathrm{s}\) (D) \(1+(7 \pi / 12) \mathrm{s}\)
The equation for displacement of a particle at time \(\mathrm{t}\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). If the mass of the particle is \(5 \mathrm{gm}\), then the total energy of the particle is \(\ldots \ldots \ldots\) erg (A) 250 (B) 125 (C) 500 (D) 375
For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\). (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\) Statement \(-1:\) The periodic time of a simple pendulum increases on the surface of moon. Statement \(-2:\) Moon is very small as compared to Earth. (A) a (B) \(\mathrm{b}\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.