Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If the equation for a transverse wave is $\mathrm{y}=\mathrm{A} \operatorname{Sin} 2 \pi\( \)\\{(1 / \mathrm{T})-(\mathrm{x} / \lambda)\\}$. then for what wavelength will the maximum velocity of the particle be double the wave velocity ? (A) \((\pi \mathrm{A} / 4)\) (B) \((\pi \mathrm{A} / 2)\) (C) \(\pi \mathrm{A}\) (D) \(2 \pi \mathrm{A}\)

Short Answer

Expert verified
The short answer is: \(\lambda = \pi A\). The correct option is (C).

Step by step solution

01

Wave Equation

The given wave equation is: \[y = A\, \sin{(2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right))}\]
02

Find maximum velocity

To find the maximum velocity of the particle, we need to differentiate the wave equation with respect to time. \[v_\text{particle}(t) = \frac{dy}{dt}\] Taking the partial derivative with respect to time, we get: \[v_\text{particle}(t) = 2\pi A \frac{1}{T} \cos{(2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right))}\] To find the maximum velocity, we need to find when v_particle(t) reaches its maximum amplitude. This occurs when the value inside the cosine function is: \[\cos{(2\pi\left(\frac{t}{T} - \frac{x}{\lambda}\right))} = \pm 1\] Then, the maximum velocity will be: \[v_\text{max} = \pm 2\pi A \frac{1}{T}\]
03

Find the wave speed

The wave speed can be found using the following relation: \[v_\text{wave} = \frac{\lambda}{T}\]
04

Set the maximum velocity equal to twice the wave speed

Now, we can set the maximum velocity equal to twice the wave speed: \[v_\text{max} = 2 v_\text{wave}\] Substitute the expressions for v_max and v_wave: \[\pm 2\pi A \frac{1}{T} = 2\left(\frac{\lambda}{T}\right)\]
05

Solve for the wavelength

Now we can solve for the wavelength: \[\lambda = \pm \pi A\] Since we cannot have a negative wavelength, we'll take only the positive solution, so the answer is: \[\lambda = \pi A\] From the given options, the correct answer is (C) \(\pi \mathrm{A}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\) (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) d Statement \(-1:\) For a particle executing S.H.M. with an amplitude of $0.01 \mathrm{~m}\( and frequency \)30 \mathrm{hz}\(, the maximum acceleration is \)36 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$. Statement \(-2:\) The maximum acceleration for the above particle is $\pm \omega 2 \mathrm{~A}\(, where \)\mathrm{A}$ is amplitude. (A) a (B) \(\mathrm{b}\) (C) \(c\) (D) \(\mathrm{d}\)

The distance travelled by a particle performing S.H.M. during time interval equal to its periodic time is \(\ldots \ldots\) (A) A (B) \(2 \mathrm{~A}\) (C) \(4 \mathrm{~A}\) (D) Zero.

The equation for displacement of a particle at time \(\mathrm{t}\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). If the mass of the particle is \(5 \mathrm{gm}\), then the total energy of the particle is \(\ldots \ldots \ldots\) erg (A) 250 (B) 125 (C) 500 (D) 375

The displacement of a S.H.O. is given by the equation \(\mathrm{x}=\mathrm{A}\) \(\cos \\{\omega t+(\pi / 8)\\}\). At what time will it attain maximum velocity? (A) \((3 \pi / 8 \omega)\) (B) \((8 \pi / 3 \omega)\) (C) \((3 \pi / 16 \omega)\) (D) \((\pi / 16 \pi)\).

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\). (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\) Statement \(-1:\) The periodic time of a simple pendulum increases on the surface of moon. Statement \(-2:\) Moon is very small as compared to Earth. (A) a (B) \(\mathrm{b}\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free