Chapter 10: Problem 1420
A block having mass \(\mathrm{M}\) is placed on a horizontal frictionless surface. This mass is attached to one end of a spring having force constant \(\mathrm{k}\). The other end of the spring is attached to a rigid wall. This system consisting of spring and mass \(\mathrm{M}\) is executing SHM with amplitude \(\mathrm{A}\) and frequency \(\mathrm{f}\). When the block is passing through the mid-point of its path of motion, a body of mass \(\mathrm{m}\) is placed on top of it, as a result of which its amplitude and frequency changes to \(\mathrm{A}^{\prime}\) and \(\mathrm{f}\). The ratio of amplitudes \(\left(\mathrm{A}^{1} / \mathrm{A}\right)=\ldots \ldots \ldots\) (A) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{m}\\}\) (B) \(\sqrt{\\{m} /(\mathrm{M}+\mathrm{m})\\}\) (C) \(\sqrt{\\{} \mathrm{M} /(\mathrm{M}+\mathrm{m})\\}\) (D) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{M}\\}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.