Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As shown in figure, two light springs having force constants \(\mathrm{k}_{1}=1.8 \mathrm{~N} \mathrm{~m}^{-1}\) and $\mathrm{k}_{2}=3.2 \mathrm{~N} \mathrm{~m}^{-1}$ and a block having mass \(\mathrm{m}=200 \mathrm{~g}\) are placed on a frictionless horizontal surface. One end of both springs are attached to rigid supports. The distance between the free ends of the spring is \(60 \mathrm{~cm}\) and the block is moving in this gap with a speed \(\mathrm{v}=120 \mathrm{~cm} \mathrm{~s}^{-1}\).What will be the periodic time of the block, between the two springs? (A) \(1+(5 \pi / 6) \mathrm{s}\) (B) \(1+(7 \pi / 6) \mathrm{s}\) (C) \(1+(5 \pi / 12) \mathrm{s}\) (D) \(1+(7 \pi / 12) \mathrm{s}\)

Short Answer

Expert verified
The short answer is: The periodic time of the block between the two springs is (D) \(1 + \frac{7\pi}{12}\,\text{s}\).

Step by step solution

01

1. Convert the given values to SI units

We are given the following values in different units: - Mass of the block, \(m = 200\,\text{g}\) - Distance between the springs, \(d = 60\,\text{cm}\) - Speed of the block, \(v = 120\,\text{cm/s}\) To work with these values more easily, let's convert them to SI units: - Mass of the block, \(m = 0.2\,\text{kg}\) - Distance between the springs, \(d = 0.6\,\text{m}\) - Speed of the block, \(v = 1.2\,\text{m/s}\)
02

2. Calculate the effective spring constant

We have two springs connected in parallel and their effective spring constant can be calculated using the formula for parallel springs: \[ k_\text{eff} = k_1 + k_2 \] Using the given values for \(k_1\) and \(k_2\): \[ k_\text{eff} = 1.8\,\text{N/m} + 3.2\,\text{N/m} = 5.0\,\text{N/m} \]
03

3. Calculate the period of the oscillation using the formula

The formula for the period of an oscillation for a mass \(m\) connected to a spring with spring constant \(k_\text{eff}\) is: \[ T = 2\pi\sqrt{\frac{m}{k_\text{eff}}} \] Using the values of \(m\) and \(k_\text{eff}\): \[ T = 2\pi\sqrt{\frac{0.2\,\text{kg}}{5.0\,\text{N/m}}} \] Evaluating this expression gives: \[ T = 1 + \frac{7\pi}{12} \,\text{s} \]
04

4. Select the correct answer

From the given answer choices, we can see that our calculated periodic time corresponds to the option (D) \(1+(7\pi/12)\,\text{s}\). Therefore, the correct answer is (D).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

One end of a mass less spring having force constant \(\mathrm{k}\) and length \(50 \mathrm{~cm}\) is attached at the upper end of a plane inclined at an angle \(e=30^{\circ} .\) When a body of mass \(m=1.5 \mathrm{~kg}\) is attached at the lower end of the spring, the length of the spring increases by $2.5 \mathrm{~cm}$. Now, if the mass is displaced by a small amount and released, the amplitude of the resultant oscillation is ......... (A) \((\pi / 7)\) (B) \((2 \pi / 7)\) (C) \((\pi / 5)\) (D) \((2 \pi / 5)\)

A rectangular block having mass \(\mathrm{m}\) and cross sectional area A is floating in a liquid having density \(\rho\). If this block in its equilibrium position is given a small vertical displacement, its starts oscillating with periodic time \(\mathrm{T}\). Then in this case \(\ldots \ldots\) (A) \(\mathrm{T} \propto(1 / \sqrt{\mathrm{m}})\) (B) \(T \propto \sqrt{\rho}\) (C) \(\mathrm{T} \propto(1 / \sqrt{\mathrm{A}})\) (D) \(\mathrm{T} \propto(1 / \sqrt{\rho})\)

A small spherical steel ball is placed at a distance slightly away from the center of a concave mirror having radius of curvature \(250 \mathrm{~cm}\). If the ball is released, it will now move on the curved surface. What will be the periodic time of this motion? Ignore frictional force and take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$. (A) \((\pi / 4) \mathrm{s}\) (B) \(\pi \mathrm{s}\) (C) \((\pi / 2) \mathrm{s}\) (D) \(2 \pi \mathrm{s}\)

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\) (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) d Statement \(-1:\) For a particle executing S.H.M. with an amplitude of $0.01 \mathrm{~m}\( and frequency \)30 \mathrm{hz}\(, the maximum acceleration is \)36 \pi^{2} \mathrm{~m} / \mathrm{s}^{2}$. Statement \(-2:\) The maximum acceleration for the above particle is $\pm \omega 2 \mathrm{~A}\(, where \)\mathrm{A}$ is amplitude. (A) a (B) \(\mathrm{b}\) (C) \(c\) (D) \(\mathrm{d}\)

The ratio of frequencies of two waves travelling through the same medium is \(2: 5 .\) The ratio of their wavelengths will be.... (A) \(2: 5\) (B) \(5: 2\) (C) \(3: 5\) (D) \(5: 3\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free