Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\). (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\). (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\) Statement \(-1:\) The periodic time of a simple pendulum increases on the surface of moon. Statement \(-2:\) Moon is very small as compared to Earth. (A) a (B) \(\mathrm{b}\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\)

Short Answer

Expert verified
The correct option is (B) Statement 1 is true, Statement 2 is true, but Statement 2 is not the correct explanation for Statement 1.

Step by step solution

01

Analyze Statement 1

Statement 1 states that the periodic time of a simple pendulum increases on the surface of the Moon. To verify this statement, we will examine the formula for the period of a simple pendulum: \(T = 2\pi\sqrt{\frac{l}{g}}\), where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. The periodic time of the pendulum depends on the value of g. Now, let's compare the acceleration due to gravity on Earth and Moon. Earth's gravity, \(g_E\), is approximately 9.81 m/s², and the Moon's gravity, \(g_M\), is approximately 1.63 m/s². Since \(g_M < g_E\), we can see that the periodic time of the pendulum will indeed be greater on the Moon compared to Earth, and thus, Statement 1 is true.
02

Analyze Statement 2

Statement 2 states that the Moon is very small compared to Earth. The Moon's diameter is about 3,474 km, and Earth's diameter is about 12,742 km. The Moon's mass is also smaller than Earth's mass (about 1/6th). Therefore, Statement 2 is true.
03

Determine the correctness of the explanation

Although Statement 2 is true, the size of the Moon is not the correct reason for the increase in periodic time of a simple pendulum on the Moon's surface. The correct explanation is related to the Moon's lower gravity, which directly affects the period of the pendulum according to its formula, \(T = 2\pi\sqrt{\frac{l}{g}}\). Lower gravity results in a greater period, and the Moon has a lower gravity than Earth due to its smaller mass and size.
04

Select the correct option

Since both Statement 1 and Statement 2 are true, but Statement 2 is not the correct explanation for Statement 1, the correct option is (b) Statement 1 is true, Statement 2 is true, but Statement 2 is not the correct explanation for Statement 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Two sound waves are represented by $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}-\mathrm{kx})\( and \)\mathrm{y}=\mathrm{a} \cos (\omega \mathrm{t}-\mathrm{kx})$. The phase difference between the waves in water is \(\ldots \ldots \ldots\) (A) \((\pi / 2)\) (B) \((\pi / 4)\) (C) \(\pi\) (D) \((3 \pi / 4)\)

The equation for displacement of a particle at time \(\mathrm{t}\) is given by the equation \(\mathrm{y}=3 \cos 2 \mathrm{t}+4 \sin 2 \mathrm{t}\). The amplitude of oscillation is \(\ldots \ldots \ldots . \mathrm{cm}\). (A) 1 (B) 3 (C) 5 (D) 7

Twenty four tuning forks are arranged in such a way that each fork produces 6 beats/s with the preceding fork. If the frequency of the last tuning fork is double than the first fork, then the frequency of the second tuning fork is \(\ldots \ldots\) (A) 132 (B) 138 (C) 276 (D) 144

For particles \(\mathrm{A}\) and \(\mathrm{B}\) executing S.H.M., the equation for displacement is given by $\mathrm{y}_{1}=0.1 \sin (100 \mathrm{t}+\mathrm{p} / 3)$ and \(\mathrm{y}_{2}=0.1\) cos pt respectively. The phase difference between velocity of particle \(\mathrm{A}\) with respect to that of \(\mathrm{B}\) is \(\ldots \ldots\) \((\mathrm{A})-(\pi / 3)\) (B) \((\pi / 6)\) (C) \(-(\pi / 6)\) (D) \((\pi / 3)\)

Two masses \(m_{1}\) and \(m_{2}\) are attached to the two ends of a massless spring having force constant \(\mathrm{k}\). When the system is in equilibrium, if the mass \(\mathrm{m}_{1}\) is detached, then the angular frequency of mass \(m_{2}\) will be \(\ldots \ldots \ldots .\) (A) \(\sqrt{\left(\mathrm{k} / \mathrm{m}_{1}\right)}\) (B) \(\sqrt{\left(\mathrm{k} / \mathrm{m}^{2}\right)}\) (C) \(\sqrt{\left(k / m_{2}\right)+m_{1}}\) (D) \(\sqrt{\left\\{k /\left(m_{1}+m_{2}\right)\right\\}}\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free