Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For the following questions, statement as well as the reason(s) are given. Each questions has four options. Select the correct option. (a) Statement \(-1\) is true, statement \(-2\) is true; statement \(-2\) is the correct explanation of statement \(-1\) (b) Statement \(-1\) is true, statement \(-2\) is true but statement \(-2\) is not the correct explanation of statement \(-1\) (c) Statement \(-1\) is true, statement \(-2\) is false (d) Statement \(-1\) is false, statement \(-2\) is true (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\) Statement \(-1:\) Periodic time of a simple pendulum is independent of the mass of the bob. Statement \(-2:\) The restoring force does not depend on the mass of the bob. (A) a (B) \(b\) (C) \(\mathrm{c}\) (D) \(\mathrm{d}\)

Short Answer

Expert verified
(C) Statement \(-1\) is true, statement \(-2\) is false

Step by step solution

01

Analyze Statement 1

The periodic time of a simple pendulum is given by the formula \(T = 2\pi \sqrt{\frac {L}{g}}\), where \(T\) is the period, \(L\) is the length of the pendulum, and \(g\) is the acceleration due to gravity. As we can see from the formula, the period does not depend on the mass of the bob. Therefore, Statement 1 is true.
02

Analyze Statement 2

The equation for the restoring force acting on a pendulum bob in a simple pendulum system is \(F = -mgsin(\theta)\), where \(F\) is the restoring force, \(m\) is the mass of the bob, \(g\) is the acceleration due to gravity, and \(\theta\) is the angular displacement of the pendulum from its equilibrium position. As we can see from the equation, the restoring force does depend on the mass of the bob. Therefore, Statement 2 is false.
03

Check Explanation

As Statement 1 is true and Statement 2 is false, there is no need to check if Statement 2 explains Statement 1 since Statement 2 is not the correct explanation for Statement 1. Based on our analysis, the correct option is: (C) Statement \(-1\) is true, statement \(-2\) is false

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A block having mass \(\mathrm{M}\) is placed on a horizontal frictionless surface. This mass is attached to one end of a spring having force constant \(\mathrm{k}\). The other end of the spring is attached to a rigid wall. This system consisting of spring and mass \(\mathrm{M}\) is executing SHM with amplitude \(\mathrm{A}\) and frequency \(\mathrm{f}\). When the block is passing through the mid-point of its path of motion, a body of mass \(\mathrm{m}\) is placed on top of it, as a result of which its amplitude and frequency changes to \(\mathrm{A}^{\prime}\) and \(\mathrm{f}\). The ratio of amplitudes $\left(\mathrm{A}^{1} / \mathrm{A}\right)=\ldots \ldots \ldots$ (A) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{m}\\}\) (B) \(\sqrt{\\{m} /(\mathrm{M}+\mathrm{m})\\}\) (C) \(\sqrt{\\{} \mathrm{M} /(\mathrm{M}+\mathrm{m})\\}\) (D) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{M}\\}\)

If the equation for displacement of two particles executing S.H.M. is given by \(\mathrm{y}_{1}=2 \sin (10 \mathrm{t}+\theta)\) and $\mathrm{y}_{2}=3 \cos 10 \mathrm{t}$ respectively, then the phase difference between the velocity of two particles will be \(\ldots \ldots \ldots\) (A) \(-\theta\) (B) \(\theta\) (C) \(\theta-(\pi / 2)\) (D) \(\theta+(\pi / 2)\).

If the equation of a wave in a string having linear mass density $0.04 \mathrm{~kg} \mathrm{~m}^{-1}\( is given by \)\mathrm{y}=0.02\( \)\sin [2 \pi\\{1 /(0.04)\\}-\\{\mathrm{x} /(0.50)\\}]$, then the tension in the string is \(\ldots \ldots \ldots \ldots\) N. (All values are in \(\mathrm{mks}\) ) (A) \(6.25\) (B) \(4.0\) (C) \(12.5\) (D) \(0.5\)

If the equation for a particle performing S.H.M. is given by $\mathrm{y}=\sin 2 \mathrm{t}+\sqrt{3} \cos 2 \mathrm{t}\(, its periodic time will be \)\ldots \ldots .$ s. (A) 21 (B) \(\pi\) (C) \(2 \pi\) (D) \(4 \pi\).

Two waves are represented by $\mathrm{y}_{1}=\mathrm{A} \sin \omega \mathrm{t}\( and \)\mathrm{y}_{2}=\mathrm{A}\( cos \)\omega \mathrm{t}$. The phase of the first wave, \(\mathrm{w}\). r. t. to the second wave is (A) more by radian (B) less by \(\pi\) radian (C) more by \(\pi / 2\) (D) less by \(\pi / 2\)

See all solutions

Recommended explanations on English Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free