Chapter 10: Problem 1338
The distance travelled by a particle performing S.H.M. during time interval equal to its periodic time is \(\ldots \ldots\) (A) A (B) \(2 \mathrm{~A}\) (C) \(4 \mathrm{~A}\) (D) Zero.
Chapter 10: Problem 1338
The distance travelled by a particle performing S.H.M. during time interval equal to its periodic time is \(\ldots \ldots\) (A) A (B) \(2 \mathrm{~A}\) (C) \(4 \mathrm{~A}\) (D) Zero.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe wave number for a wave having wavelength \(0.005 \mathrm{~m}\) is \(\ldots \ldots \mathrm{m}^{-1}\) (A) 5 (B) 50 (C) 100 (D) 200
A simple pendulum is executing S.H.M. around point \(\mathrm{O}\) between the end points \(B\) and \(C\) with a periodic time of \(6 \mathrm{~s}\). If the distance between \(\mathrm{B}\) and \(\mathrm{C}\) is \(20 \mathrm{~cm}\) then in what time will the bob move from \(C\) to \(D\) ? Point \(D\) is at the mid-point of \(C\) and \(\mathrm{O}\). (A) \(1 \mathrm{~s}\) (B) \(2 \mathrm{~s}\) (C) \(3 \mathrm{~s}\) (D) \(4 \mathrm{~s}\)
A block having mass \(\mathrm{M}\) is placed on a horizontal frictionless surface. This mass is attached to one end of a spring having force constant \(\mathrm{k}\). The other end of the spring is attached to a rigid wall. This system consisting of spring and mass \(\mathrm{M}\) is executing SHM with amplitude \(\mathrm{A}\) and frequency \(\mathrm{f}\). When the block is passing through the mid-point of its path of motion, a body of mass \(\mathrm{m}\) is placed on top of it, as a result of which its amplitude and frequency changes to \(\mathrm{A}^{\prime}\) and \(\mathrm{f}\). The ratio of amplitudes $\left(\mathrm{A}^{1} / \mathrm{A}\right)=\ldots \ldots \ldots$ (A) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{m}\\}\) (B) \(\sqrt{\\{m} /(\mathrm{M}+\mathrm{m})\\}\) (C) \(\sqrt{\\{} \mathrm{M} /(\mathrm{M}+\mathrm{m})\\}\) (D) \(\sqrt{\\{}(\mathrm{M}+\mathrm{m}) / \mathrm{M}\\}\)
The amplitude for a S.H.M. given by the equation $\mathrm{x}=3 \sin 3 \mathrm{pt}+4 \cos 3 \mathrm{pt}\( is \)\ldots \ldots \ldots \ldots \mathrm{m}$ (A) 5 (B) 7 (C) 4 (D) \(3 .\)
If two antinodes and three nodes are formed in a distance of \(1.21 \AA\), then the wavelength of the stationary wave is (A) \(2.42 \AA\) (B) \(6.05 \AA\) (C) \(3.63 \AA\) (D) \(1.21 \AA\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.