Chapter 9: Problem 778
The value of \(\mathrm{m}\) and \(\mathrm{n}\) for which the function \(f(x)=\mid \begin{array}{ll}{[\\{\operatorname{Sin}(m+1) x+\sin x\\} / x],} & x<0 \\ n, & x=0 \\ {\left[\left\\{\sqrt{\left. \left.\left(x+x^{2}\right)-\sqrt{x}\right\\} /\left(x^{(3 / 2)}\right)\right],}\right.\right.} & x>0\end{array}\) is continuous for \(\forall x \in R\) ? (a) \(\mathrm{m}=-(3 / 2), \mathrm{n}=(1 / 2)\) (b) \(\mathrm{m}=(1 / 2), \mathrm{n}=(3 / 2)\) (c) \(\mathrm{m}=(1 / 2), \mathrm{n}=-(3 / 2)\) (d) \(\mathrm{m}=(5 / 2), \mathrm{n}=(1 / 2)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.