Chapter 9: Problem 774
If \(=\mid \begin{array}{ll}\mathrm{x}+\mathrm{a} \sqrt{2} \operatorname{Sin} \mathrm{x}, & 0 \leq \mathrm{x} \leq(\pi / 4) \\ 2 \mathrm{x} \operatorname{Cot} \mathrm{x}+\mathrm{b}, & {[(\pi / 4)<\mathrm{x} \leq(\pi / 2)]} \\ \mathrm{a} \operatorname{Cos} 2 \mathrm{x}+\mathrm{b} \operatorname{Sin} \mathrm{x}, & (\pi / 2)<\mathrm{x} \leq \pi\end{array}\) is continuous on \([0, \pi]\), then \(\mathrm{a}=\ldots \ldots\) and \(\mathrm{b}=\ldots \ldots .\) (a) \(\mathrm{a}=(5 \pi / 2), \mathrm{b}=(5 \pi / 4)\) (b) \(\mathrm{a}=-(5 \pi / 2), \mathrm{b}=-(5 \pi / 4)\) (c) \(\mathrm{a}=(\pi / 6), \mathrm{b}=[(-\pi) / 12]\) (d) \(\mathrm{a}=-(5 \pi / 4), \mathrm{b}=(5 \pi / 2)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.