Chapter 9: Problem 768
If \(\mathrm{f}(\mathrm{x})=\mid \begin{array}{ll}\mathrm{m}+3 \mathrm{nx}, & \mathrm{x}>1 \\ 11, & \mathrm{x}=1 \\ 5 \mathrm{nx}-2 \mathrm{~m}, & \mathrm{x}<1\end{array}\) is continuous at \(\mathrm{x}=1\) then \(\mathrm{m}=\ldots .\) and \(\mathrm{n}=\ldots . .\) ? (a) \(\mathrm{m}=2, \mathrm{n}=-3\) (b) \(\mathrm{m}=-2, \mathrm{n}=3\) (c) \(\mathrm{m}=2, \mathrm{n}=3\) (d) \(m=3, n=3\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.