Chapter 6: Problem 483
If matrix \(\mathrm{A}=\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|\) and \(\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|\) then which one of the following holds for all \(n \in N\). (use principle of mathematical Induction) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}-(\mathrm{n}-1) \mathrm{I}\) (b) \(\mathrm{A}^{\mathrm{n}}=2^{\mathrm{n}-1} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (a) \(\mathrm{A}^{\mathrm{n}}=\mathrm{n} \cdot \mathrm{A}+(\mathrm{n}-1) \mathrm{I}\) (b) \(A^{n}=2^{n-1} \cdot A-(n-1) I\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.