Chapter 6: Problem 478
Let \(\mathrm{P}(\mathrm{n}): \mathrm{n}^{2}+1\) is an odd integer, if it is assumed that \(\mathrm{P}(\mathrm{k})\) is true \(\Rightarrow \mathrm{P}(\mathrm{k}+1)\) is true. Therefore, \(\mathrm{P}(\mathrm{n})\) is true (a) for \(\mathrm{n}>1\) (b) for all \(\mathrm{n} \in \mathrm{N}\) (c) for \(\mathrm{n}>2\) (d) None of these
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.