Chapter 4: Problem 309
\(\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}\cos \mathrm{x} & 0 & \sin \mathrm{x} \\ 0 & 1 & 0 \\ -\sin \mathrm{x} & 0 & \cos \mathrm{x}\end{array}\right|, \mathrm{g}(\mathrm{y})=\left|\begin{array}{ccc}\cos \mathrm{y} & -\sin \mathrm{y} & 0 \\ \sin \mathrm{y} & \cos \mathrm{y} & 0 \\ 0 & 0 & 1\end{array}\right|\) (i) \(\mathrm{f}(\mathrm{x}) \cdot \mathrm{f}(\mathrm{y})=\) (a) \(\mathrm{f}(\mathrm{xy})\) (b) \(\mathrm{f}(\mathrm{x} / \mathrm{y})\) (c) \(\mathrm{f}(\mathrm{x}+\mathrm{y})\) (d) \(\mathrm{f}(\mathrm{x}-\mathrm{y})\) (ii) Which of the following is correct? (a) \([\mathrm{f}(\mathrm{x})]^{-1}=[1 /\\{\mathrm{f}(\mathrm{x})\\}]\) (b) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(\mathrm{x})\) (c) \([\mathrm{f}(\mathrm{x})]^{-1}=\mathrm{f}(-\mathrm{x})\) (d) \([\mathrm{f}(\mathrm{x})]^{-1}=-\mathrm{f}(-\mathrm{x})\) (iii) \([\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{y})]^{-1}=\) (a) \(\mathrm{f}\left(\mathrm{x}^{-1}\right) \mathrm{g}\left(\mathrm{y}^{-1}\right)\) (b) \(\mathrm{f}\left(\mathrm{y}^{-1}\right) \mathrm{g}\left(\mathrm{x}^{-1}\right)\) (c) \(\mathrm{f}(-\mathrm{x}) \mathrm{g}(-\mathrm{y})\) (d) \(\mathrm{g}(-\mathrm{y}) \mathrm{f}(-\mathrm{x})\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.