The inverse element of
$$
\left|\begin{array}{lll}
y & y & y \\
y & y & y \\
y & y & y
\end{array}\right|
$$
in group
$$
M=|| \begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}|/ x \in R, x \neq 0, \quad I=(1 / 3)| \begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}|| \text { w.r.t }
$$
matrix multiplication is
(a) \(\begin{array}{lll}(1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y})
\\\ (1 / \mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y}) \\ (1 /
\mathrm{y}) & (1 / \mathrm{y}) & (1 / \mathrm{y})\end{array} \mid\)
(b) \(\left|\begin{array}{lll}(1 / 3 y) & (1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) &
(1 / 3 y) & (1 / 3 y) \\ (1 / 3 y) & (1 / 3 y) & (1 / 3 y)\end{array}\right|\)
(c) \(\left|\begin{array}{lll}(1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6
\mathrm{y}) \\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y})
\\\ (1 / 6 \mathrm{y}) & (1 / 6 \mathrm{y}) & (1 / 6
\mathrm{y})\end{array}\right|\)
(d) \(\left|\begin{array}{lll}(1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9
\mathrm{y}) \\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y})
\\\ (1 / 9 \mathrm{y}) & (1 / 9 \mathrm{y}) & (1 / 9
\mathrm{y})\end{array}\right|\)