Chapter 2: Problem 156
\(\mathrm{A}\left(\mathrm{z}_{1}\right), \mathrm{B}\left(\mathrm{z}_{2}\right)\) and \(\mathrm{C}\left(\mathrm{z}_{3}\right)\) are vertices of \(\triangle \mathrm{ABC}\) where \(\mathrm{m}\) \(\angle \mathrm{C}=(\pi / 2)\) and \(\mathrm{AC}=\mathrm{BC}, \mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}\) are complex number if \(\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}=\mathrm{k}\left(\mathrm{z}_{1}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{2}\right)\) then \(\mathrm{k}=\) (a) 1 (b) 2 (c) 4 (d) non of these
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.