Chapter 15: Problem 1446
The equations to the common tangents to the two hyperbola \(\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)=1\) and are \(\left(y^{2} / a^{2}\right)-\left(x^{2} / b^{2}\right)=1\) (a) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)}\) (b) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{b}^{2}-\mathrm{a}^{2}\right)}\) (c) \(\mathrm{y}=\pm \mathrm{x} \pm \sqrt{\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)}\) (d) \(\mathrm{y}=\pm \mathrm{x} \pm\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.