Chapter 15: Problem 1421
If \(\mathrm{P}(\mathrm{m}, \mathrm{n})\) is a point on an ellipse \(\left(\mathrm{x}^{2} / \mathrm{a}^{2}\right)+\left(\mathrm{y}^{2} / \mathrm{b}^{2}\right)=1\) with foci \(\mathrm{S}\) and \(\mathrm{S}^{\prime}\) and eccentricity e, then area of \(\mathrm{SPS}^{\prime}\) is \(\ldots \ldots \ldots\) (a) \(\mathrm{ae} \sqrt{\left(a^{2}-\mathrm{m}^{2}\right)}\) (b) \(\mathrm{ae} \sqrt{\left(b^{2}-\mathrm{m}^{2}\right)}\) (c) \(b e \sqrt{\left(b^{2}-m^{2}\right)}\) (d) be \(\sqrt{\left(a^{2}-m^{2}\right)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.