Chapter 14: Problem 1311
If the equation of the locus of a point equidistant from the points \(\left(a_{1}, b_{1}\right)\) and \(\left(a_{2}, b_{2}\right)\) is \(\left(a_{1}-a_{2}\right) x+\left(b_{1}, b_{2}\right) y+c=0\), then the value of \(\mathrm{C}\) will be (a) \((1 / 2)\left(\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}-\mathrm{a}_{1}^{2}-\mathrm{b}_{1}^{2}\right)\) (b) \(a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}\) (c) \((1 / 2)\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}\right)\) (d) \(\sqrt{\left(a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}\right)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.