Chapter 14: Problem 1257
If \(2 \mathrm{x}+2 \mathrm{y}-5=0\) is the equation of the line containing one of the sides of an equilateral triangle and \((1,2)\) is one vertex, then find the equations of the lines containing the other two sides. (a) \(\mathrm{y}=(2+\sqrt{3}) \mathrm{x}-\sqrt{3}, \mathrm{y}=(2+\sqrt{3}) \mathrm{x}+\sqrt{3}\) (b) \(y=(2-\sqrt{3}) x-\sqrt{3}, y=(2+\sqrt{3}) x+\sqrt{3}\) (c) \(y=(2-\sqrt{3}) x+\sqrt{3}, y=(2+\sqrt{3}) x-\sqrt{3}\) (d) \(y=(2+\sqrt{3}) x+\sqrt{3}, y=(2+\sqrt{3}) x-\sqrt{3}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.