Chapter 14: Problem 1248
A square of side a lies above the \(\mathrm{x}\) -axis and has one vertex at the origin. The side passing through the origin makes an angle a \(\alpha[0<\alpha<(\pi / 4)]\) with the positive direction of \(\mathrm{x}\) -axis. The eq. of its diagonal not passing through the origin is: (A) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\sin \alpha-\cos \alpha)=\mathrm{a}\) (B) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\sin \alpha+\cos \alpha)=\mathrm{a}\) (C) \(\mathrm{y}(\cos \alpha+\sin \alpha)+\mathrm{x}(\cos \alpha-\sin \alpha)=\mathrm{a}\) (D) \(y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.