Chapter 13: Problem 1190
The solution of \(\mathrm{x}^{3}(\mathrm{dy} / \mathrm{dx})+4 \mathrm{x}^{2} \cdot \tan \mathrm{y}=\mathrm{e}^{\mathrm{x}} \cdot \mathrm{sec} \mathrm{y}\) satisfying \(\mathrm{y}(1)=0\) is: (A) \(\sin \mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1) \mathrm{x}^{-4}\) (B) \(\tan \mathrm{y}=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}} \cdot \mathrm{x}^{-3}\) (C) \(\sin \mathrm{y}=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1) \mathrm{x}^{-3}\) (D) \(\tan \mathrm{y}=(\mathrm{x}-2) \mathrm{e}^{\mathrm{x}} \cdot \log \mathrm{x}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.