Chapter 13: Problem 1158
The solution of the differential equation \(\left(1+\mathrm{y}^{2}\right)+\left(\mathrm{x}-\mathrm{e}^{(\tan )-1 \mathrm{y}}\right)(\mathrm{dy} / \mathrm{dx})=0\) is: (A) \(x \cdot e^{(\tan )-1 y}=\tan ^{-1} y+k\) (B) \(x \cdot e^{(2 \tan )-1 y}=e^{-(\tan )-1 y}+k\) (C) \(2 \mathrm{x} \cdot \mathrm{e}^{(\tan )-1 \mathrm{y}}=\mathrm{e}^{(2 \tan )-1 \mathrm{y}}+\mathrm{k}\) (D) \((\mathrm{x}-2)=\mathrm{k} \cdot \mathrm{e}^{(\tan )-1 \mathrm{y}}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.