Chapter 11: Problem 980
\(\int\left[(x+1) d x /\left\\{x\left(1+x e^{x}\right)^{2}\right\\}\right]=\) (a) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right) /\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid-\left[1 /\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\) (b) \(\log \left|\left(x e^{x}\right) /\left(1+x e^{x}\right)\right|-\left[1 /\left(1+x e^{x}\right)\right]\) (c) \(\log \left(\mathrm{xe}^{\mathrm{x}}\right) /\left(1+\mathrm{xe}^{\mathrm{x}}\right) \mid+\left[1 /\left(1+\mathrm{xe}^{\mathrm{x}}\right)\right]\) (d) \(\log \left|\left(1+x e^{x}\right) /\left(x e^{x}\right)\right|-\left[1 /\left(1+x e^{x}\right)\right]\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.