Chapter 10: Problem 888
If \(\mathrm{y}=\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\right] \tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+3 \mathrm{x}+3\right)\right]\) \(+\tan ^{-1}\left[1 /\left(\mathrm{x}^{2}+5 \mathrm{x}+7\right)\right] \ldots \ldots\) to \(\mathrm{n}\) terms then \((\mathrm{dy} / \mathrm{d} \mathrm{x})\) \(=\) (a) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (b) \(\left[1 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]-\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (c) \(\left[2 /\left\\{1+(\mathrm{x}+\mathrm{n})^{2}\right\\}\right]+\left[1 /\left(1+\mathrm{x}^{2}\right)\right]\) (d) \(\sum \mathrm{n}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.