Chapter 1: Problem 46
\(\mathrm{A}=[-1,1], \mathrm{B}=[0,1], \mathrm{C}=[-1,0]\) \(\mathrm{S}_{1}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{A}\right\\}\) \(\mathrm{S}_{2}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{A}, \mathrm{y} \in \mathrm{B}\right\\}\) \(S_{3}=\left\\{(x, y) / x^{2}+y^{2}=1, x \in A, y \in C\right\\}\) \(\mathrm{S}_{4}=\left\\{(\mathrm{x}, \mathrm{y}) / \mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{x} \in \mathrm{B}, \mathrm{y} \in \mathrm{C}\right\\}\) then (a) \(\mathrm{S}_{1}\) is not a graph of a function (b) \(\mathrm{S}_{2}\) is not a graph of a function (c) \(S_{3}\) is not a graph of a function (d) \(\mathrm{S}_{4}\) is not a graph of a function
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.