Chapter 4: Problem 36
Let \(\mathrm{f}, \mathrm{g}\) and \(\mathrm{h}\) be real-valued functions defined on the interval \([0,1]\) by \(\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}, \mathrm{~g}(\mathrm{x})=\mathrm{x} \mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}\) and \(\mathrm{h}(\mathrm{x})=\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}^{2}}+\mathrm{e}^{-\mathrm{x}^{2}}\). If \(\mathrm{a}, \mathrm{b}\) and \(\mathrm{c}\) denote, respectively, the absolute maximum of \(\mathrm{f}, \mathrm{g}\) and \(\mathrm{h}\) on \([0,1]\), then A) \(a=b\) and \(c \neq b\) B) \(a=c\) and \(a \neq b\) C) \(a \neq b\) and \(c \neq b\) D) \(a=b=c\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.