Chapter 23: Problem 38
Let \(O\) be the origin and let \(P Q R\) be an arbitrary triangle. The point \(S\) is such that $$ \overrightarrow{O P} \cdot \overrightarrow{O Q}+\overrightarrow{O R} \cdot \overrightarrow{O S}=\overrightarrow{O R} \cdot \overrightarrow{O P}+\overrightarrow{O Q} \cdot \overrightarrow{O S}=\overrightarrow{O Q} \cdot \overrightarrow{O R}+\overrightarrow{O P} \cdot \overrightarrow{O S} $$ Then the triangle \(P Q R\) has \(S\) as its [A] centroid [B] circumcentre [C] incentre [D] orthocenter
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.