Chapter 22: Problem 47
Let \(a, b \in \mathbb{R}\) and \(a^{2}+b^{2} \neq 0 .\) Suppose \(S=\left\\{z \in \mathbb{C}: z=\frac{1}{a+i b t}, t \in \mathbb{R}, t \neq 0\right\\}\), where \(i=\sqrt{-1}\). If \(z=x+i y\) and \(z \in S\), then \((x, y)\) lies on (A) the circle with radius \(\frac{1}{2 a}\) and centre \(\left(\frac{1}{2 a}, 0\right)\) for \(a>0, b \neq 0\) (B) the circle with radius \(-\frac{1}{2 a}\) and centre \(\left(-\frac{1}{2 a}, 0\right)\) for \(a<0, b \neq 0\) (C) the \(x\) -axis for \(a \neq 0, b=0\) (D) the \(y\) -axis for \(a=0, b \neq 0\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.