Chapter 22: Problem 44
Let \(a, b \in \mathbb{R}\) and \(f: \mathbb{R} \rightarrow \mathbb{R}\) be defined by \(f(x)=a \cos \left(\left|x^{3}-x\right|\right)+b|x| \sin \left(\left|x^{3}+x\right|\right) .\) Then \(f\) is (A) differentiable at \(x=0\) if \(a=0\) and \(b=1\) (B) differentiable at \(x=1\) if \(a=1\) and \(b=0\) (C) NOT differentiable at \(x=0\) if \(a=1\) and \(b=0\) (D) NOT differentiable at \(x=1\) if \(a=1\) and \(b=1\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.