Chapter 1: Problem 56
Let the vectors \(\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{R S}, \overrightarrow{S T}, \overrightarrow{T U}\) and \(\overrightarrow{U P}\) represent the sides of a regular hexagon. STATEMENT- \(1: \overrightarrow{P Q} \times(\overrightarrow{R S}+S \vec{T}) \neq \overrightarrow{0}\) because STATEMENT- \(2: \overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}\) and \(\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}\) (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.