Chapter 9: Problem 42
Moment of inertia of a uniform quarter disc of radius \(\mathrm{R}\) and mass \(\mathrm{M}\) about an axis through its centre of mass and perpendicular to its plane is : (1) \(\frac{\mathrm{MR}^{2}}{2}-\mathrm{M}\left(\frac{4 \mathrm{R}}{3 \pi}\right)^{2}\) (2) \(\frac{\mathrm{MR}^{2}}{2}-\mathrm{M}\left(\sqrt{2} \frac{4 \mathrm{R}}{3 \pi}\right)^{2}\) (3) \(\frac{\mathrm{MR}^{2}}{2}+\mathrm{M}\left(\frac{4 \mathrm{R}}{3 \pi}\right)^{2}\) (4) \(\frac{\mathrm{MR}^{2}}{2}+\mathrm{M}\left(\sqrt{2} \frac{4 \mathrm{R}}{3 \pi}\right)^{2}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.