Chapter 7: Problem 3
\(\int \frac{\sec x}{a+b \tan x} d x\) is equal to (1) \(\frac{1}{\sqrt{a^{2}+b^{2}}}\) \elln \(\tan \frac{x}{2}+C\) (2) \(\frac{1}{\sqrt{a^{2}+b^{2}}} \ell n\left(\tan \left(\frac{x+\tan ^{-1}\left(\frac{a}{b}\right)}{2}\right)\right)+C\) (3) \(\frac{1}{\sqrt{a^{2}+b^{2}}} \ell n\left(\tan \left(\frac{x+\tan ^{-1}\left(\frac{b}{a}\right)}{2}\right)\right)+C\) (4) \(\frac{1}{\sqrt{a^{2}+b^{2}}}\) \elln \(\sin \frac{x}{2}+C\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.