Chapter 2: Problem 13
Let \(\omega=\frac{-1+i \sqrt{3}}{2}\), and \(\omega, \omega, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{8}\) be roots of equation \(x^{10}+a x+b=0\), where \(\alpha_{1} \neq \alpha_{i}, i \neq j\) value of \(\left(\omega-\alpha_{1}\right)\left(\omega-\alpha_{2}\right) \ldots .\left(\omega-\alpha_{8}\right)\) \(=\) (1) \(90 \omega^{2}\) (2) \({ }^{10} \mathrm{C}_{2} \omega^{2}\) (3) \(10 \omega+a\) (4) 0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.