Chapter 1: Problem 31
Ultraviolet light of wavelength \(\lambda_{1}\) and \(\lambda_{2}\left(\lambda_{2}>\lambda_{1}\right)\) when allowed to fall on hydrogen atoms in their ground state is found to liberate electrons with kinetic energies \(E_{1}\) and \(E_{2}\) respectively. The value of planck's constant can be found from the relation. (1) \(\mathrm{h}=\frac{1}{\mathrm{c}}\left(\lambda_{2}-\lambda_{1}\right)\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)\) (2) \(\mathrm{h}=\frac{1}{\mathrm{c}}\left(\lambda_{1}+\lambda_{2}\right)\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)\) (3) \(\mathrm{h}=\frac{\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \lambda_{1} \lambda_{2}}{\mathrm{c}\left(\lambda_{2}-\lambda_{1}\right)}\) (4) \(\mathrm{h}=\frac{\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right) \lambda_{1} \lambda_{2}}{\mathrm{c}\left(\lambda_{1}+\lambda_{2}\right)}\) (5) \(\mathrm{h}=\frac{\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right) \lambda_{1} \lambda_{2}}{3 \mathrm{c}\left(\lambda_{2}-\lambda_{1}\right)}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.